Small x Scattering using Gauge/Gravity Duality

Marko Djurić

University of Porto

Holography and QCD - Recent progress and challenges Tokyo, Tuesday, September 24, 2013

FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

JHEP 1011 (2010) 051 Phys.Rev. D86 (2012) JHEP 1309 (2013) 084

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

▶ Cross sections for many different processes (DIS, DVCS, VM production...) show a power growth with $1/x$.

- ▶ Cross sections for many different processes (DIS, DVCS, VM production...) show a power growth with $1/x$.
- \triangleright The same, universal gluon distribution functions describe these processes, and gluons dominate at small x .

- ▶ Cross sections for many different processes (DIS, DVCS, VM production...) show a power growth with $1/x$.
- \blacktriangleright The same, universal gluon distribution functions describe these processes, and gluons dominate at small x .
- \triangleright These point to a universal Pomeron exchange as the dominant process.

- ▶ Cross sections for many different processes (DIS, DVCS, VM production...) show a power growth with $1/x$.
- \blacktriangleright The same, universal gluon distribution functions describe these processes, and gluons dominate at small x .
- \triangleright These point to a universal Pomeron exchange as the dominant process.
- \blacktriangleright The BFKL equation sums the leading $\log \frac{1}{x}$ diagrams for interaction of gluon on gluon, and leads to power behaviour for the cross section - QCD Pomeron.

- ▶ Cross sections for many different processes (DIS, DVCS, VM production...) show a power growth with $1/x$.
- \blacktriangleright The same, universal gluon distribution functions describe these processes, and gluons dominate at small x .
- \triangleright These point to a universal Pomeron exchange as the dominant process.
- \blacktriangleright The BFKL equation sums the leading $\log \frac{1}{x}$ diagrams for interaction of gluon on gluon, and leads to power behaviour for the cross section - QCD Pomeron.
- \blacktriangleright This perturbative QCD approach works at high Q^2 , and the goal is to extend it as much as possible into the low Q^2 region, typically up to somewhere of the order $Q^2 = 1 - 4 GeV^2$.

At very small x , non-linear effects also become important.

At very small x , non-linear effects also become important.

At very small x , non-linear effects also become important.

 \triangleright Our goal is to apply an alternative method to study the non-perturbative and saturation regions, and also see how much can they be applied to the higher Q^2 region as well.

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

 \blacktriangleright Consider $2 \rightarrow 2$ scattering.

- ► Consider $2 \rightarrow 2$ scattering.
- \triangleright Work in the Regge limit

- ► Consider $2 \rightarrow 2$ scattering.
- \triangleright Work in the Regge limit

 \triangleright We can expand the amplitude into partial waves

$$
A(s,t) = 16\pi \sum_{j=0}^{\infty} (2j+1)A_j(t)P_j(\cos\theta_t),
$$

- ► Consider $2 \rightarrow 2$ scattering.
- \triangleright Work in the Regge limit

 \triangleright We can expand the amplitude into partial waves

$$
A(s,t) = 16\pi \sum_{j=0}^{\infty} (2j+1)A_j(t)P_j(\cos \theta_t),
$$

 \blacktriangleright In the Regge limit,

$$
P_j(1+\frac{2s}{t}) \to \frac{\Gamma(2j+1)}{\Gamma^2(j+1)}(\frac{s}{2t})^j \sim f(t)s^j.
$$

- ► Consider $2 \rightarrow 2$ scattering.
- \triangleright Work in the Regge limit

 \triangleright We can expand the amplitude into partial waves

$$
A(s,t) = 16\pi \sum_{j=0}^{\infty} (2j+1)A_j(t)P_j(\cos \theta_t),
$$

 \blacktriangleright In the Regge limit,

$$
P_j(1 + \frac{2s}{t}) \to \frac{\Gamma(2j+1)}{\Gamma^2(j+1)} (\frac{s}{2t})^j \sim f(t)s^j.
$$

If exchanged particle has spin i

$$
A(s,t) \sim s^j
$$

• Optical theorem:

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, 0)
$$

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, 0)
$$

 \blacktriangleright Experimentally

 $\sigma_{tot} \sim s^{0.08}$

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, 0)
$$

 \blacktriangleright Experimentally

 $\sigma_{tot} \sim s^{0.08}$

 \triangleright The amplitude will depend on an infinite number of exchanged particles.

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, 0)
$$

 \blacktriangleright Experimentally

$$
\sigma_{tot} \sim s^{0.08}
$$

- \triangleright The amplitude will depend on an infinite number of exchanged particles.
- \triangleright We can continue the amplitude into the complex plane

$$
A^{\pm}(j,t)=\begin{cases} A_j^+(t) & j\, even\\ A_j^-(t) & j\, odd\end{cases}
$$

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, 0)
$$

 \blacktriangleright Experimentally

$$
\sigma_{tot} \sim s^{0.08}
$$

- \triangleright The amplitude will depend on an infinite number of exchanged particles.
- \triangleright We can continue the amplitude into the complex plane

$$
A^{\pm}(j,t)=\begin{cases} A_j^+(t) & j\, even \\ A_j^-(t) & j\, odd \end{cases}
$$

 \blacktriangleright $A(j, t)$ will have as singularities poles at integer j for fixed t. As we change t , the position of the pole will change, leading to a trajectory

$$
j = \alpha(t)
$$

 \blacktriangleright We can write $A(s, t)$ as a contour integral in the complex plane

$$
A^{\pm}(s,t) = 8\pi \sum_{j=0}^{\infty} (2j+1) A_j^{\pm}(t) (P_j(z_t) \pm P_j(-z_t))
$$

=
$$
8\pi i \int_C dj(2j+1) A^{\pm}(j,t) \frac{P(j,-z_t) \pm P(j,z_t)}{\sin(\pi j)}
$$

 \blacktriangleright We can write $A(s, t)$ as a contour integral in the complex plane

$$
A^{\pm}(s,t) = 8\pi \sum_{j=0}^{\infty} (2j+1) A_j^{\pm}(t) (P_j(z_t) \pm P_j(-z_t))
$$

= $8\pi i \int_C dj(2j+1) A^{\pm}(j,t) \frac{P(j,-z_t) \pm P(j,z_t)}{\sin(\pi j)}$

 \blacktriangleright We next deform the contour C to a contour C' parallel to imaginary axis and real part $-1/2$

$$
A^{\pm}(s,t) = -16\pi^2 \sum_{i} \frac{(2\alpha_i^{\pm}(t) + 1)\beta_i^{\pm}(t)}{\sin(\pi \alpha_i^{\pm}(t))} (P(\alpha_i^{\pm}(t), -z_t) \pm P(\alpha_i^{\pm}(t), z_t))
$$

 \blacktriangleright We can write $A(s,t)$ as a contour integral in the complex plane

$$
A^{\pm}(s,t) = 8\pi \sum_{j=0}^{\infty} (2j+1) A_j^{\pm}(t) (P_j(z_t) \pm P_j(-z_t))
$$

= $8\pi i \int_C dj(2j+1) A^{\pm}(j,t) \frac{P(j,-z_t) \pm P(j,z_t)}{\sin(\pi j)}$

 \blacktriangleright We next deform the contour C to a contour C' parallel to imaginary axis and real part $-1/2$

$$
A^{\pm}(s,t) = -16\pi^2 \sum_{i} \frac{(2\alpha_i^{\pm}(t) + 1)\beta_i^{\pm}(t)}{\sin(\pi \alpha_i^{\pm}(t))} (P(\alpha_i^{\pm}(t), -z_t) \pm P(\alpha_i^{\pm}(t), z_t))
$$

 \blacktriangleright $\alpha_i^{\pm}(t)$ is the position of the pole in the j plane.

 \blacktriangleright We can write $A(s, t)$ as a contour integral in the complex plane

$$
A^{\pm}(s,t) = 8\pi \sum_{j=0}^{\infty} (2j+1) A_j^{\pm}(t) (P_j(z_t) \pm P_j(-z_t))
$$

= $8\pi i \int_C dj(2j+1) A^{\pm}(j,t) \frac{P(j,-z_t) \pm P(j,z_t)}{\sin(\pi j)}$

 \blacktriangleright We next deform the contour C to a contour C' parallel to imaginary axis and real part $-1/2$

$$
A^{\pm}(s,t) = -16\pi^2 \sum_{i} \frac{(2\alpha_i^{\pm}(t) + 1)\beta_i^{\pm}(t)}{\sin(\pi \alpha_i^{\pm}(t))} (P(\alpha_i^{\pm}(t), -z_t) \pm P(\alpha_i^{\pm}(t), z_t))
$$

- \blacktriangleright $\alpha_i^{\pm}(t)$ is the position of the pole in the j plane.
- \triangleright Take advantage of the asymptotic form of the Legendre polynomials

$$
\sqrt{\pi}P(j,z) \sim \frac{\Gamma(j+1/2)}{\Gamma(j+1)}(2z)^j \quad \Re j \ge -1/2
$$

$$
A^{\pm}(s,t) \sim (1 \pm e^{-i\pi\alpha^{\pm}(t)})\beta(t)(\frac{s}{s_0})^{\alpha^{\pm}(t)}.
$$

$$
A^{\pm}(s,t) \sim (1 \pm e^{-i\pi\alpha^{\pm}(t)})\beta(t)(\frac{s}{s_0})^{\alpha^{\pm}(t)}.
$$

 \triangleright $\alpha(t)$ is the term with the largest value of $\Re \alpha_i(t)$

$$
A^{\pm}(s,t) \sim (1 \pm e^{-i\pi\alpha^{\pm}(t)})\beta(t)(\frac{s}{s_0})^{\alpha^{\pm}(t)}.
$$

- \triangleright $\alpha(t)$ is the term with the largest value of $\Re \alpha_i(t)$
- \triangleright Amplitude corresponds to an exchange of a whole trajectory of particles $\alpha^{\pm}(t)$.

$$
A^{\pm}(s,t) \sim (1 \pm e^{-i\pi \alpha^{\pm}(t)}) \beta(t) (\frac{s}{s_0})^{\alpha^{\pm}(t)}
$$
.

- \triangleright $\alpha(t)$ is the term with the largest value of $\Re \alpha_i(t)$
- \triangleright Amplitude corresponds to an exchange of a whole trajectory of particles $\alpha^{\pm}(t)$.
- \blacktriangleright Equivalently, we are exchanging a 'Reggeon' object with spin $\alpha^{\pm}(t).$

$$
A^{\pm}(s,t) \sim (1 \pm e^{-i\pi\alpha^{\pm}(t)})\beta(t)(\frac{s}{s_0})^{\alpha^{\pm}(t)}.
$$

- \triangleright $\alpha(t)$ is the term with the largest value of $\Re \alpha_i(t)$.
- \blacktriangleright Equivalently, we are exchanging a 'Reggeon' object with spin $\alpha^{\pm}(t).$

 \blacktriangleright Look again at the factor

$$
1 \pm e^{-i\pi\alpha^{\pm}(t)}
$$

 \blacktriangleright Look again at the factor

$$
1 \pm e^{-i\pi\alpha^{\pm}(t)}
$$

► When $\alpha^+(t)$ is odd, $1+e^{-i\pi\alpha^+(t)}=0$, and similarly when $\alpha^-(t)$ is even, $1 - e^{-i\pi \alpha^{-}(t)} = 0$.

 \blacktriangleright Look again at the factor

$$
1 \pm e^{-i\pi\alpha^{\pm}(t)}
$$

- ► When $\alpha^+(t)$ is odd, $1+e^{-i\pi\alpha^+(t)}=0$, and similarly when $\alpha^-(t)$ is even, $1 - e^{-i\pi \alpha^{-}(t)} = 0$.
- \triangleright Two sets of trajectories, one with only particles with even non-negative spin, and one with particles with odd positive spin.
Pomeron

 \blacktriangleright Look again at the factor

$$
1 \pm e^{-i\pi\alpha^\pm(t)}
$$

- ► When $\alpha^+(t)$ is odd, $1+e^{-i\pi\alpha^+(t)}=0$, and similarly when $\alpha^-(t)$ is even, $1 - e^{-i\pi \alpha^{-}(t)} = 0$.
- \triangleright Two sets of trajectories, one with only particles with even non-negative spin, and one with particles with odd positive spin.
- \triangleright The leading Reggeon which has the quantum numbers of the vacuum, $C = +1$ and $I = 0$, is known as the Pomeron.

Pomeron

 \blacktriangleright Look again at the factor

$$
1 \pm e^{-i\pi\alpha^{\pm}(t)}
$$

- ► When $\alpha^+(t)$ is odd, $1+e^{-i\pi\alpha^+(t)}=0$, and similarly when $\alpha^-(t)$ is even, $1 - e^{-i\pi \alpha^{-}(t)} = 0$.
- \triangleright Two sets of trajectories, one with only particles with even non-negative spin, and one with particles with odd positive spin.
- \triangleright The leading Reggeon which has the quantum numbers of the vacuum, $C = +1$ and $I = 0$, is known as the Pomeron.
- \blacktriangleright The intercept $\alpha(0) > 1$ leading to non-vanishing

$$
\sigma_{tot}\sim s^{\alpha(0)-1}
$$

 \blacktriangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

 \blacktriangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

 \blacktriangleright Hence the Pomeron exchange violates this bound.

 \triangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

- \blacktriangleright Hence the Pomeron exchange violates this bound.
- \triangleright Eventually effects beyond one Pomeron exchange become important.

 \blacktriangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

- \blacktriangleright Hence the Pomeron exchange violates this bound.
- \triangleright Eventually effects beyond one Pomeron exchange become important.
- \blacktriangleright The eikonal approximation

$$
A(s, -\mathbf{q}_{\perp}^2) = -2is \int d^2b \, e^{-i\mathbf{b}_{\perp} \cdot \mathbf{q}_{\perp}} \left(e^{i\chi(s,b)} - 1\right)
$$

 \triangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

- \blacktriangleright Hence the Pomeron exchange violates this bound.
- \triangleright Eventually effects beyond one Pomeron exchange become important.
- \blacktriangleright The eikonal approximation

$$
A(s, -\mathbf{q}_{\perp}^2) = -2is \int d^2b \, e^{-i\mathbf{b}_{\perp} \cdot \mathbf{q}_{\perp}} \left(e^{i\chi(s,b)} - 1\right)
$$

Satisfies the unitarity bound, as long as $\Im \chi > 0$

 \triangleright According to the Froissart bound

$$
\sigma_{tot} \leq \pi c \log^2(\frac{s}{s_0})
$$

- \blacktriangleright Hence the Pomeron exchange violates this bound.
- \triangleright Eventually effects beyond one Pomeron exchange become important.
- \blacktriangleright The eikonal approximation

$$
A(s, -\mathbf{q}_{\perp}^2) = -2is \int d^2b \, e^{-i\mathbf{b}_{\perp} \cdot \mathbf{q}_{\perp}} \left(e^{i\chi(s,b)} - 1\right)
$$

- Satisfies the unitarity bound, as long as $\Im \chi > 0$
- \triangleright We can expand the exponential to get

$$
A(s, -\mathbf{q}_{\perp}^2) = -2is \int d^2b e^{-i\mathbf{b}_{\perp}\cdot\mathbf{q}_{\perp}}(i\chi + \frac{(i\chi)^2}{2} + \cdots).
$$

This would correspond to summing Pomeron exchange to all orders, but ignoring all non-linear interactions between the Pomerons.

This would correspond to summing Pomeron exchange to all orders, but ignoring all non-linear interactions between the Pomerons.

 \blacktriangleright The diagrams we sum are

This would correspond to summing Pomeron exchange to all orders, but ignoring all non-linear interactions between the Pomerons.

 \blacktriangleright The diagrams we sum are

We will now turn to using the AdS/CFT correspondence to study strong coupling. The correspondence relates operators in $\mathcal{N} = 4SYM$ to states in string theory on $AdS_5\times S^5$. It is valid for large 't Hooft coupling $\lambda.$

We will now turn to using the AdS/CFT correspondence to study strong coupling. The correspondence relates operators in $\mathcal{N} = 4SYM$ to states in string theory on $AdS_5\times S^5$. It is valid for large 't Hooft coupling $\lambda.$

 \triangleright We will work with the metric

$$
ds^{2} = \frac{R^{2}}{z^{2}}(dz^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}) + R^{2}d\Omega_{5}
$$

We will now turn to using the AdS/CFT correspondence to study strong coupling. The correspondence relates operators in $\mathcal{N}=4SYM$ to states in string theory on $AdS_5\times S^5$. It is valid for large 't Hooft coupling $\lambda.$

 \triangleright We will work with the metric

$$
ds^{2} = \frac{R^{2}}{z^{2}}(dz^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}) + R^{2}d\Omega_{5}
$$

 \blacktriangleright In the hardwall model, we have a cut-off

 $0 < z < z₀$

We will now turn to using the AdS/CFT correspondence to study strong coupling. The correspondence relates operators in $\mathcal{N} = 4SYM$ to states in string theory on $AdS_5\times S^5$. It is valid for large 't Hooft coupling $\lambda.$

 \triangleright We will work with the metric

$$
ds^{2} = \frac{R^{2}}{z^{2}}(dz^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}) + R^{2}d\Omega_{5}
$$

 \blacktriangleright In the hardwall model, we have a cut-off

 $0 < z < z₀$

 \triangleright The cutoff position will roughly correspond to

$$
z_0 \simeq \frac{1}{\Lambda_{QCD}}.
$$

$$
A_{W_L W_R} = \int d^2w \langle W_R w^{L_0 - 2} \bar{w}^{\tilde{L}_0 - 2} W_L \rangle
$$

$$
A_{W_L W_R} = \int d^2w \langle W_R w^{L_0 - 2} \bar{w}^{\tilde{L}_0 - 2} W_L \rangle
$$

 \triangleright We can insert a vertex operator

$$
A_{W_LW_R} = \langle W_R \mathcal{V}_P^+(T) \rangle \langle \mathcal{V}_P^-(T) W_L \rangle
$$

$$
A_{W_L W_R} = \int d^2w \langle W_R w^{L_0 - 2} \bar{w}^{\tilde{L}_0 - 2} W_L \rangle
$$

 \triangleright We can insert a vertex operator

$$
A_{W_LW_R}=\langle W_R\mathcal{V}^+_P(T)\rangle\langle \mathcal{V}^-_P(T)W_L\rangle
$$

 \blacktriangleright where

$$
\mathcal{V}^{\pm}_P\stackrel{\text{def}}{=}\left(\frac{2}{\alpha'}\partial X^{\pm}\partial X^{\pm}\right)^{1+\frac{\alpha' t}{4}}e^{\mp ik\cdot X}
$$

$$
A_{W_L W_R} = \int d^2w \langle W_R w^{L_0 - 2} \bar{w}^{\tilde{L}_0 - 2} W_L \rangle
$$

 \triangleright We can insert a vertex operator

$$
A_{W_LW_R} = \langle W_R \mathcal{V}_P^+(T) \rangle \langle \mathcal{V}_P^-(T) W_L \rangle
$$

 \blacktriangleright where

$$
\mathcal{V}^{\pm}_P\stackrel{\text{def}}{=}\left(\frac{2}{\alpha'}\partial X^{\pm}\partial \bar{X}^{\pm}\right)^{1+\frac{\alpha' t}{4}}e^{\mp ik\cdot X}
$$

 \blacktriangleright This operator will satisfy the on shell condition

$$
L_0 \mathcal{V}_P^{\pm} = \bar{L}_0 \mathcal{V}_P^{\pm} = \mathcal{V}_P^{\pm}
$$

$$
A_{W_L W_R} = \int d^2w \langle W_R w^{L_0 - 2} \bar{w}^{\tilde{L}_0 - 2} W_L \rangle
$$

 \triangleright We can insert a vertex operator

$$
A_{W_LW_R} = \langle W_R \mathcal{V}_P^+(T) \rangle \langle \mathcal{V}_P^-(T) W_L \rangle
$$

 \blacktriangleright where

$$
\mathcal{V}^{\pm}_P\stackrel{\text{def}}{=}\left(\frac{2}{\alpha'}\partial X^{\pm}\partial \bar{X}^{\pm}\right)^{1+\frac{\alpha' t}{4}}e^{\mp ik\cdot X}
$$

 \blacktriangleright This operator will satisfy the on shell condition

$$
L_0 \mathcal{V}_P^{\pm} = \bar{L}_0 \mathcal{V}_P^{\pm} = \mathcal{V}_P^{\pm}
$$

 \triangleright We can show that this would lead to amplitudes

$$
A(s,t) \sim (\alpha's)^{\alpha(t)}
$$

$$
\mathcal{V}_P(j,\pm) = (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} \phi_{\pm j}(r).
$$

 \blacktriangleright

$$
\mathcal{V}_P(j,\pm) = (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} \phi_{\pm j}(r).
$$

 \blacktriangleright They must satisfy the on-shell condition.

 \blacktriangleright

$$
\mathcal{V}_P(j,\pm) = (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} \phi_{\pm j}(r).
$$

 \blacktriangleright They must satisfy the on-shell condition.

$$
[\frac{j-2}{2}-\frac{\alpha'}{4}\Delta_j]e^{\mp ik\cdot X}\phi_{\pm j}(r)=0
$$

 \blacktriangleright

I

$$
\mathcal{V}_P(j,\pm) = (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} \phi_{\pm j}(r).
$$

 \blacktriangleright They must satisfy the on-shell condition.

$$
[\frac{j-2}{2}-\frac{\alpha'}{4}\Delta_j]e^{\mp ik\cdot X}\phi_{\pm j}(r)=0
$$

► where $\Delta_j=(r/R)^j(\Delta_0)(r/R)^{-j}.$ And Δ_0 is the scalar Laplacian in curved space.

 \blacktriangleright

 \blacksquare

$$
[j - 2 - \frac{\alpha' t}{2} e^{-2u} - \frac{1}{2\sqrt{\lambda}} (\partial_u^2 - 4)] \phi_{\pm}(u) = 0
$$

$$
[j - 2 - \frac{\alpha' t}{2} e^{-2u} - \frac{1}{2\sqrt{\lambda}} (\partial_u^2 - 4)] \phi_{\pm}(u) = 0
$$

 \blacktriangleright It can be solved

$$
\begin{split} &\mathcal{V}_P(j,\nu,k,\pm) \sim \\ &(\partial X^\pm \overline{\partial} X^\pm)^{\frac{j}{2}} e^{\mp i k\cdot X} e^{(j-2)u} K_{\pm 2i\nu}(|t|^{1/2} e^{-u}) \end{split}
$$

$$
[j - 2 - \frac{\alpha' t}{2} e^{-2u} - \frac{1}{2\sqrt{\lambda}} (\partial_u^2 - 4)] \phi_{\pm}(u) = 0
$$

 \blacktriangleright It can be solved

$$
\mathcal{V}_P(j,\nu,k,\pm) \sim
$$

$$
(\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} e^{(j-2)u} K_{\pm 2i\nu} (|t|^{1/2} e^{-u})
$$

 \blacktriangleright and for the amplitude we would have

$$
\mathcal{T}^{(+)} \sim \int \frac{dj}{2\pi i} \int \frac{d\nu \nu \sinh 2\pi \nu}{\pi} \frac{\Pi(j) s^j}{j - j_0^{(+)} + \mathcal{D}\nu^2} \times \langle \mathcal{W}_{R0} \mathcal{V}_P(j, \nu, k, -) \rangle \langle \mathcal{V}_P(j, \nu, k, +) \mathcal{W}_{L0} \rangle
$$

$$
[j - 2 - \frac{\alpha' t}{2} e^{-2u} - \frac{1}{2\sqrt{\lambda}} (\partial_u^2 - 4)] \phi_{\pm}(u) = 0
$$

 \blacktriangleright It can be solved

$$
\mathcal{V}_P(j,\nu,k,\pm) \sim
$$

$$
(\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ik \cdot X} e^{(j-2)u} K_{\pm 2i\nu}(|t|^{1/2} e^{-u})
$$

 \blacktriangleright and for the amplitude we would have

$$
\mathcal{T}^{(+)} \sim \int \frac{dj}{2\pi i} \int \frac{d\nu \nu \sinh 2\pi \nu}{\pi} \frac{\Pi(j) s^j}{j - j_0^{(+)} + \mathcal{D}\nu^2} \times \langle \mathcal{W}_{R0} \mathcal{V}_P(j, \nu, k, -) \rangle \langle \mathcal{V}_P(j, \nu, k, +) \mathcal{W}_{L0} \rangle
$$

ighth $j_0^{(+)}$ $0^{(+)}$ given by

$$
j_0^{(+)}=2-2/\sqrt{\lambda}+O(1/\lambda) \; .
$$

and $\mathcal{D}=2/\sqrt{\lambda}$.

 \triangleright The most direct application is to calculate scattering amplitudes. In the case of $2 \rightarrow 2$ scattering, the above expressions can be simplified.

- \triangleright The most direct application is to calculate scattering amplitudes. In the case of $2 \rightarrow 2$ scattering, the above expressions can be simplified.
- \triangleright We can write the scattering amplitude as

$$
A(s,t) = 2s \int d^2l e^{-i\mathbf{l}_{\perp} \cdot \mathbf{q}_{\perp}} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z}) \chi(s,l,z,\bar{z})
$$

- \triangleright The most direct application is to calculate scattering amplitudes. In the case of $2 \rightarrow 2$ scattering, the above expressions can be simplified.
- \triangleright We can write the scattering amplitude as

$$
A(s,t)=2s\int d^2le^{-i{\bf l}_\perp\cdot {\bf q}_\perp}\int dzd\bar{z}\,P_{13}(z)P_{24}(\bar{z})\chi(s,l,z,\bar{z})
$$

 \triangleright P_{13} and P_{24} are the products of incoming and outgoing scattering states, and χ is the exchange kernel.

- \triangleright The most direct application is to calculate scattering amplitudes. In the case of $2 \rightarrow 2$ scattering, the above expressions can be simplified.
- \triangleright We can write the scattering amplitude as

$$
A(s,t)=2s\int d^2le^{-i\mathbf{l}_\perp\cdot\mathbf{q}_\perp}\int dzd\bar{z}\,P_{13}(z)P_{24}(\bar{z})\chi(s,l,z,\bar{z})
$$

- \triangleright P_{13} and P_{24} are the products of incoming and outgoing scattering states, and χ is the exchange kernel.
- \blacktriangleright For the Pomeron:

$$
\chi(\tau, L) = (\cot(\frac{\pi \rho}{2}) + i)g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp(\frac{-L^2}{\rho \tau})}{(\rho \tau)^{3/2}}
$$

- \triangleright The most direct application is to calculate scattering amplitudes. In the case of $2 \rightarrow 2$ scattering, the above expressions can be simplified.
- \triangleright We can write the scattering amplitude as

$$
A(s,t) = 2s \int d^2l e^{-i\mathbf{l}_{\perp} \cdot \mathbf{q}_{\perp}} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z}) \chi(s,l,z,\bar{z})
$$

- \triangleright P_{13} and P_{24} are the products of incoming and outgoing scattering states, and χ is the exchange kernel.
- \blacktriangleright For the Pomeron:

$$
\chi(\tau, L) = (\cot(\frac{\pi \rho}{2}) + i)g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp(\frac{-L^2}{\rho \tau})}{(\rho \tau)^{3/2}}
$$

Due to conformal invariance, χ is a function of only two variables

$$
L = \log(1 + v + \sqrt{v(2 + v)})
$$

$$
\tau = \log(\frac{\rho}{2}zz's)
$$
\triangleright Obtained by placing a sharp cut-off on the radial AdS coordinate at $z=z_0$.

- \triangleright Obtained by placing a sharp cut-off on the radial AdS coordinate at $z=z_0$.
- First notice that at $t = 0 \times$ for conformal pomeron exchange can be integrated in impact parameter

$$
\chi(\tau, t=0, z, \bar{z}) = i\pi g_0^2 \left(\cot\left(\frac{\pi\rho}{2}\right) + i\right) (z\bar{z}) e^{(1-\rho)\tau} \frac{e^{-\frac{(\ln(\bar{z}/z))^2}{\rho\tau}}}{(\rho\tau)^{1/2}}
$$

- \triangleright Obtained by placing a sharp cut-off on the radial AdS coordinate at $z=z_0$.
- First notice that at $t = 0$ χ for conformal pomeron exchange can be integrated in impact parameter

$$
\chi(\tau, t=0, z, \bar{z}) = i\pi g_0^2 \left(\cot\left(\frac{\pi\rho}{2}\right) + i\right) (z\bar{z}) e^{(1-\rho)\tau} \frac{e^{-\frac{(\ln(\bar{z}/z))^2}{\rho\tau}}}{(\rho\tau)^{1/2}}
$$

 \blacktriangleright Similarly, the $t = 0$ result for the hard-wall model can also be written explicitly

$$
\chi_{hw}(\tau, t=0, z, \bar{z}) = \chi(\tau, 0, z, \bar{z}) + \mathcal{F}(\tau, z, \bar{z}) \chi(\tau, 0, z, z_0^2/\bar{z}).
$$

- \triangleright Obtained by placing a sharp cut-off on the radial AdS coordinate at $z=z_0$.
- First notice that at $t = 0$ χ for conformal pomeron exchange can be integrated in impact parameter

$$
\chi(\tau, t=0, z, \bar{z}) = i\pi g_0^2 \left(\cot\left(\frac{\pi\rho}{2}\right) + i\right) (z\bar{z}) e^{(1-\rho)\tau} \frac{e^{-\frac{(\ln(\bar{z}/z))^2}{\rho\tau}}}{(\rho\tau)^{1/2}}
$$

 \triangleright Similarly, the $t = 0$ result for the hard-wall model can also be written explicitly

$$
\chi_{hw}(\tau, t=0, z, \bar{z}) = \chi(\tau, 0, z, \bar{z}) + \mathcal{F}(\tau, z, \bar{z}) \chi(\tau, 0, z, z_0^2/\bar{z}).
$$

 \triangleright When $t \neq 0$, we will use an approximation

$$
\chi_{hw}(\tau, l, z, \bar{z}) = C(\tau, z, \bar{z}) D(\tau, l) \chi_{hw}^{(0)}(\tau, l, z, \bar{z})
$$

$$
\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \qquad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}}
$$

is set by the boundary conditions at the wall and represents the relative importance of the two terms

$$
\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \qquad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}}
$$

is set by the boundary conditions at the wall and represents the relative importance of the two terms

 \triangleright Varies between -1 and 1, approaching -1 at either large z , which roughly corresponds to small Q^2 , or at large τ corresponding to small \mathcal{X} .

$$
\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \qquad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}}
$$

is set by the boundary conditions at the wall and represents the relative importance of the two terms

- \triangleright Varies between -1 and 1, approaching -1 at either large z , which roughly corresponds to small Q^2 , or at large τ corresponding to small \mathcal{X} .
- It is therefore in these regions that confinement is important!

$$
\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \qquad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}}
$$

is set by the boundary conditions at the wall and represents the relative importance of the two terms

- \triangleright Varies between -1 and 1, approaching -1 at either large z , which roughly corresponds to small Q^2 , or at large τ corresponding to small \hat{x} .
- It is therefore in these regions that confinement is important!
- \triangleright Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba,Costa,Penedones)

$$
A(s,t) = 2is \int d^2l e^{-i\mathbf{l}_{\perp}\cdot\mathbf{q}_{\perp}} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z}) (1 - e^{i\chi(s,b,z,\bar{z})})
$$

$$
\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \qquad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}}
$$

is set by the boundary conditions at the wall and represents the relative importance of the two terms

- \triangleright Varies between -1 and 1, approaching -1 at either large z , which roughly corresponds to small Q^2 , or at large τ corresponding to small \hat{x} .
- It is therefore in these regions that confinement is important!
- \triangleright Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba,Costa,Penedones)

$$
A(s,t) = 2is \int d^2l e^{-i\mathbf{l}_{\perp} \cdot \mathbf{q}_{\perp}} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z}) (1 - e^{i\chi(s,b,z,\bar{z})})
$$

 \triangleright Note that these methods can be generalized to Odderon exchange as well [Brower, MD, Tan, 2008].

 \triangleright The weak and strong coupling Pomeron exchange kernels have a remarkably similar form.

- \triangleright The weak and strong coupling Pomeron exchange kernels have a remarkably similar form.
- \blacktriangleright At $t = 0$ Weak coupling:

$$
\mathcal{K}(k_{\perp}, k'_{\perp}, s) = \frac{s^{j_0}}{\sqrt{4\pi \mathcal{D} \log s}} e^{-(\log k_{\perp} - \log k'_{\perp})^2 / 4\mathcal{D} \log s}
$$

$$
j_0 = 1 + \frac{\log 2}{\pi \lambda}, \quad \mathcal{D} = \frac{14\zeta(3)}{\pi} \lambda / 4\pi^2
$$

Strong coupling:

$$
\mathcal{K}(z, z', s) = \frac{s^{j_0}}{\sqrt{4\pi \mathcal{D} \log s}} e^{-(\log z - \log z')^2 / 4\mathcal{D} \log s}
$$

$$
j_0 = 2 - \frac{2}{\sqrt{\lambda}}, \quad \mathcal{D} = \frac{1}{2\sqrt{\lambda}}
$$

Let us enumarete the parameters that appear in our expressions that will be common to all the processes we consider next:

 \blacktriangleright g_0^2 - the coupling of the Pomeron to the external states.

- \blacktriangleright g_0^2 the coupling of the Pomeron to the external states.
- $\rho = \frac{2}{\sqrt{2}}$ $\frac{d}{\lambda}$ the Pomeron intercept $(j_0 = 2 - \rho)$, also related to the 't Hooft coupling λ .

- \blacktriangleright g_0^2 the coupling of the Pomeron to the external states.
- $\rho = \frac{2}{\sqrt{2}}$ $\frac{d}{\lambda}$ the Pomeron intercept $(j_0 = 2 - \rho)$, also related to the 't Hooft coupling λ .
- ► z^* , the size of the target probed by the Pomeron.

- \blacktriangleright g_0^2 the coupling of the Pomeron to the external states.
- $\rho = \frac{2}{\sqrt{2}}$ $\frac{d}{\lambda}$ the Pomeron intercept $(j_0 = 2 - \rho)$, also related to the 't Hooft coupling λ .
- ► z^* , the size of the target probed by the Pomeron.
- \triangleright The above three are common to both the conformal and the hard wall models, and the latter has an additional parameter

- \blacktriangleright g_0^2 the coupling of the Pomeron to the external states.
- $\rho = \frac{2}{\sqrt{2}}$ $\frac{d}{\lambda}$ the Pomeron intercept $(j_0 = 2 - \rho)$, also related to the 't Hooft coupling λ .
- ► z^* , the size of the target probed by the Pomeron.
- \triangleright The above three are common to both the conformal and the hard wall models, and the latter has an additional parameter
- $\blacktriangleright z_0 \simeq \frac{1}{\Lambda_{\Omega}c}$ $\frac{1}{\Lambda_{QCD}}$, the position of the hard wall in AdS space, intuitively should be related to Λ_{QCD}

- \blacktriangleright g_0^2 the coupling of the Pomeron to the external states.
- $\rho = \frac{2}{\sqrt{2}}$ $\frac{d}{\lambda}$ the Pomeron intercept $(j_0 = 2 - \rho)$, also related to the 't Hooft coupling λ .
- ► z^* , the size of the target probed by the Pomeron.
- \triangleright The above three are common to both the conformal and the hard wall models, and the latter has an additional parameter
- $\blacktriangleright z_0 \simeq \frac{1}{\Lambda_{\Omega}c}$ $\frac{1}{\Lambda_{QCD}}$, the position of the hard wall in AdS space, intuitively should be related to Λ_{QCD}
- \triangleright Only three parameters for the conformal model, and 4 for the hard wall.

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

Deep Inelastic Scattering is the scattering between an electron and a proton.

Deep Inelastic Scattering is the scattering between an electron and a proton.

Figure: DIS in dipole picture (Mueller 1990)

Deep Inelastic Scattering is the scattering between an electron and a proton.

Figure: DIS in dipole picture (Mueller 1990)

The basic kinematical variables we need for describing this process are

Deep Inelastic Scattering is the scattering between an electron and a proton.

Figure: DIS in dipole picture (Mueller 1990)

The basic kinematical variables we need for describing this process are

 \blacktriangleright center of mass energy s , the virtuality Q^2 and the scaling variable x

$$
s = -(P+k)^2
$$

\n
$$
Q^2 = -q^{\mu}q_{\mu} = -(k-k')^2 > 0
$$

\n
$$
x \approx \frac{Q^2}{s}
$$

 \triangleright We are interested in calculating the structure function

$$
F_2(x, Q^2) = x \sum_{q} e_q^2 [q(x, Q^2) + \bar{q}(x, Q^2)]
$$

 \triangleright We are interested in calculating the structure function

$$
F_2(x, Q^2) = x \sum_{q} e_q^2 [q(x, Q^2) + \bar{q}(x, Q^2)]
$$

 \blacktriangleright It is related to the total cross section by the relation

$$
F_2(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{EM}} \sigma_{tot}(x, Q^2)
$$

 \triangleright We are interested in calculating the structure function

$$
F_2(x, Q^2) = x \sum_{q} e_q^2 [q(x, Q^2) + \bar{q}(x, Q^2)]
$$

 \blacktriangleright It is related to the total cross section by the relation

$$
F_2(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{EM}} \sigma_{tot}(x, Q^2)
$$

 \triangleright To calculate the total cross section we can use the optical theorem

$$
\sigma_{tot} = \frac{1}{s} \Im A(s, t = 0)
$$

Let us now discuss the data we compared with.

 \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments (Aaron et al. JHEP 2010).

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments (Aaron et al. JHEP 2010).
- \triangleright We will consider only low x physics, which in this talk will mean $x < 0.01$.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments (Aaron et al. JHEP 2010).
- \blacktriangleright We will consider only low x physics, which in this talk will mean $x < 0.01$.
- \triangleright In this region the photon and the partons do not interact directly, rather the photon emits a Pomeron which interacts with the parton.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments (Aaron et al. JHEP 2010).
- \blacktriangleright We will consider only low x physics, which in this talk will mean $x < 0.01$.
- \triangleright In this region the photon and the partons do not interact directly, rather the photon emits a Pomeron which interacts with the parton.
- \blacktriangleright We will look at $0.10 GeV^2 < Q^2 < 400 GeV^2$.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments (Aaron et al. JHEP 2010).
- \blacktriangleright We will consider only low x physics, which in this talk will mean $x < 0.01$.
- \triangleright In this region the photon and the partons do not interact directly, rather the photon emits a Pomeron which interacts with the parton.
- \blacktriangleright We will look at $0.10 GeV^2 < Q^2 < 400 GeV^2$.
- \blacktriangleright At lower or higher Q^2 there is no experimental data with $x < 0.01.$

As we saw, we are going to calculate F_2 by relating it to the total cross section. This in turn we will calculate using the optical theorem, for which we need the forward scattering amplitude at $t = 0$. Putting it all together, using the eikonal approximation we get [Brower, MD, Sarcevic, Tan, 2010] As we saw, we are going to calculate F_2 by relating it to the total cross section. This in turn we will calculate using the optical theorem, for which we need the forward scattering amplitude at $t = 0$. Putting it all together, using the eikonal approximation we get [Brower, MD, Sarcevic, Tan, 2010]

$$
F_2(x, Q^2) = \frac{Q^2}{2\pi^2} \int d^2b \int dz \int dz' P_{13}(z, Q^2) P_{24}(z') \text{Re}\left(1 - e^{i\chi(s, b, z, z')}\right)
$$

As we saw, we are going to calculate F_2 by relating it to the total cross section. This in turn we will calculate using the optical theorem, for which we need the forward scattering amplitude at $t = 0$. Putting it all together, using the eikonal approximation we get [Brower, MD, Sarcevic, Tan, 2010]

$$
F_2(x, Q^2) = \frac{Q^2}{2\pi^2} \int d^2b \int dz \int dz' P_{13}(z, Q^2) P_{24}(z') \text{Re}\left(1 - e^{i\chi(s, b, z, z')}\right)
$$

We need to supply the wavefunctions for the photon and the proton. For the photon we will consider an R boson propagating through the bulk that couples to leptons on the boundary (Polchinski, Strassler 2003)

$$
P_{13}(z,Q^2) = \frac{1}{z}(Qz)^2(K_0^2(Qz) + K_1^2(Qz)),
$$

We would also need a wavefunction associated to the proton $\phi_p(z)$. For the current analysis, we will assume that the wave function is sharply peaked near the IR boundary z_0 , with $1/Q' \leq z_0$, with Q' of the order of the proton mass. For simplicity, we will simply replace P_{24} by a sharp delta-function
We would also need a wavefunction associated to the proton $\phi_p(z)$. For the current analysis, we will assume that the wave function is sharply peaked near the IR boundary z_0 , with $1/Q' \leq z_0$, with Q' of the order of the proton mass. For simplicity, we will simply replace P_{24} by a sharp delta-function

$$
P_{24}(z') \approx \delta(z'-1/Q').
$$

We would also need a wavefunction associated to the proton $\phi_p(z)$. For the current analysis, we will assume that the wave function is sharply peaked near the IR boundary z_0 , with $1/Q' \leq z_0$, with Q' of the order of the proton mass. For simplicity, we will simply replace P_{24} by a sharp delta-function

$$
P_{24}(z') \approx \delta(z'-1/Q').
$$

Similarly, for P_{13} which is peaked around $z \approx 1/Q$, we will replace

We would also need a wavefunction associated to the proton $\phi_p(z)$. For the current analysis, we will assume that the wave function is sharply peaked near the IR boundary z_0 , with $1/Q' \leq z_0$, with Q' of the order of the proton mass. For simplicity, we will simply replace P_{24} by a sharp delta-function

$$
P_{24}(z') \approx \delta(z'-1/Q').
$$

Similarly, for P_{13} which is peaked around $z \approx 1/Q$, we will replace

$$
P_{13}(z) \approx \delta(z - 1/Q),
$$

First we will look at the conformal limit, using single Pomeron exchange. The b space integration can be performed explicitly

First we will look at the conformal limit, using single Pomeron exchange. The b space integration can be performed explicitly

$$
\int d^2b \ Im \ \chi(s,b,z,z') \ \ = \ \ \frac{g_0^2}{16} \sqrt{\frac{\rho^3}{\pi}} \ (zz') \ e^{(1-\rho)\tau} \frac{\exp(\frac{-(\log z - \log z')^2}{\rho \tau})}{\tau^{1/2}}.
$$

First we will look at the conformal limit, using single Pomeron exchange. The b space integration can be performed explicitly

$$
\int d^2b \ Im \ \chi(s,b,z,z') \ \ = \ \ \frac{g_0^2}{16} \sqrt{\frac{\rho^3}{\pi}} \ (zz') \ e^{(1-\rho)\tau} \frac{\exp(\frac{-(\log z - \log z')^2}{\rho \tau})}{\tau^{1/2}}.
$$

 \triangleright For single Pomeron exchange, the imaginary part is enough due to the optical theorem.

First we will look at the conformal limit, using single Pomeron exchange. The b space integration can be performed explicitly

$$
\int d^2b \ Im \ \chi(s,b,z,z') \ \ = \ \ \frac{g_0^2}{16} \sqrt{\frac{\rho^3}{\pi}} \ (zz') \ e^{(1-\rho)\tau} \frac{\exp(\frac{-(\log z - \log z')^2}{\rho \tau})}{\tau^{1/2}}.
$$

- \triangleright For single Pomeron exchange, the imaginary part is enough due to the optical theorem.
- \blacktriangleright The structure function F_2 can be expressed as

$$
F_2(x, Q^2) = \frac{g_0^2 \rho^{3/2}}{32\pi^{5/2}} \int dz dz' P_{13}(z, Q^2) P_{24}(z') (zz'Q^2)
$$

$$
\times e^{(1-\rho)\tau} \frac{\exp(\frac{-(\log z - \log z')^2}{\rho \tau})}{\tau^{1/2}}
$$

Similarly for the hard-wall model we would have

Similarly for the hard-wall model we would have

Im
$$
\chi_{hw}(s, t = 0, z, z') = Im \ \chi_c(\tau, 0, z, z') + \mathcal{F}(z, z', \tau) Im \ \chi_c(\tau, 0, z, z_0^2/z'),
$$

Similarly for the hard-wall model we would have

Im
$$
\chi_{hw}(s, t = 0, z, z') = Im \ \chi_c(\tau, 0, z, z') + \mathcal{F}(z, z', \tau) Im \ \chi_c(\tau, 0, z, z_0^2/z'),
$$

leading to the expression for F_2 with confinement

$$
F_2(x, Q^2) = \frac{g_0^2 \rho^{3/2}}{32\pi^{5/2}} \int dz dz' P_{13}(z, Q^2) P_{24}(z') (zz'Q^2) e^{(1-\rho)\tau}
$$

$$
\times \left(e^{-\frac{\log^2 z/z'}{\rho\tau}} + \mathcal{F}(z, z', \tau) \frac{e^{-\frac{\log^2 zz'/z_0^2}{\rho\tau}}}{\tau^{1/2}} \right)
$$

Similarly for the hard-wall model we would have

Im
$$
\chi_{hw}(s, t = 0, z, z') = Im \ \chi_c(\tau, 0, z, z') + \mathcal{F}(z, z', \tau) Im \ \chi_c(\tau, 0, z, z_0^2/z'),
$$

leading to the expression for F_2 with confinement

$$
F_2(x, Q^2) = \frac{g_0^2 \rho^{3/2}}{32\pi^{5/2}} \int dz dz' P_{13}(z, Q^2) P_{24}(z') (zz'Q^2) e^{(1-\rho)\tau}
$$

$$
\times \left(\frac{e^{-\frac{\log^2 z/z'}{\rho \tau}}}{\tau^{1/2}} + \mathcal{F}(z, z', \tau) \frac{e^{-\frac{\log^2 zz'/z_0^2}{\rho \tau}}}{\tau^{1/2}} \right)
$$

Where

$$
\mathcal{F}(u, u', \tau) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \operatorname{erfc}(\eta), \quad \eta = \frac{u + u' + 4\tau}{\sqrt{4\tau}}.
$$

Let us make some comments about these expressions.

Let us make some comments about these expressions.

 \blacktriangleright Both of them have a factor

$$
e^{(1-\rho)\tau} \sim (\frac{1}{x})^{1-\rho}
$$

Let us make some comments about these expressions.

 \blacktriangleright Both of them have a factor

$$
e^{(1-\rho)\tau} \sim (\frac{1}{x})^{1-\rho}
$$

 \blacktriangleright This will violate the Froissart bound.

Let us make some comments about these expressions.

 \triangleright Both of them have a factor

$$
e^{(1-\rho)\tau} \sim (\frac{1}{x})^{1-\rho}
$$

- \blacktriangleright This will violate the Froissart bound.
- \blacktriangleright The difference between the conformal and confinement depends on the size of the function F .

Let us make some comments about these expressions.

 \blacktriangleright Both of them have a factor

$$
e^{(1-\rho)\tau} \sim (\frac{1}{x})^{1-\rho}
$$

- \blacktriangleright This will violate the Froissart bound.
- \triangleright The difference between the conformal and confinement depends on the size of the function F .
- ► $\mathcal F$ at fixed z, z' , goes to 1 as $\tau \to 0$ and to -1 as $\tau \to \infty$. Hence, at small x, $\mathcal{F} \rightarrow -1$ and confinement leads to a partial cancelation for the growth rate. Since $\mathcal F$ is continuous, there will be a region over which $\mathcal{F} \sim 0$, and, in this region, there is little difference between the hard-wall and the conformal results.

Let us look at the graph of $\mathcal F$ in the region where there is data

Let us look at the graph of F in the region where there is data

Figure: Contour plot for coefficient function $\mathcal F$ as a function of $log(1/z)$ and $\log(1/x)$, with $z' \simeq z_0$ fixed, $z_0 \sim \Lambda_{QCD}^{-1}$.

Finally, let us present the results of our fits:

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

 $\rho = 0.774 \pm 0.0103$, $g_0^2 = 110.13 \pm 1.93$, $Q' = 0.5575 \pm 0.0432$ GeV

 \blacktriangleright Corresponds to

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

 $\rho = 0.774 \pm 0.0103$, $g_0^2 = 110.13 \pm 1.93$, $Q' = 0.5575 \pm 0.0432$ GeV

 \blacktriangleright Corresponds to

$$
\chi^2_{d.o.f.} = 11.7
$$

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

 $\rho = 0.774 \pm 0.0103$, $g_0^2 = 110.13 \pm 1.93$, $Q' = 0.5575 \pm 0.0432$ GeV

 \blacktriangleright Corresponds to

$$
\chi^2_{d.o.f.} = 11.7
$$

 \triangleright For the hard-wall model we get a much better fit. Parameters are:

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

 $\rho = 0.774 \pm 0.0103$, $g_0^2 = 110.13 \pm 1.93$, $Q' = 0.5575 \pm 0.0432$ GeV

 \blacktriangleright Corresponds to

$$
\chi^2_{d.o.f.} = 11.7
$$

 \triangleright For the hard-wall model we get a much better fit. Parameters are:

$$
\rho = 0.7792 \pm 0.0034, \ g_0^2 = 103.14 \pm 1.68,
$$

$$
z_0 = 4.96 \pm 0.14 \, \text{GeV}^{-1}, \ Q' = 0.4333 \pm 0.0243 \, \text{GeV}
$$

Finally, let us present the results of our fits:

 \triangleright For the conformal single Pomeron exchange the parameters are:

 $\rho = 0.774 \pm 0.0103$, $g_0^2 = 110.13 \pm 1.93$, $Q' = 0.5575 \pm 0.0432$ GeV

 \blacktriangleright Corresponds to

$$
\chi^2_{d.o.f.} = 11.7
$$

 \triangleright For the hard-wall model we get a much better fit. Parameters are:

$$
\rho = 0.7792 \pm 0.0034, \ g_0^2 = 103.14 \pm 1.68,
$$

$$
z_0 = 4.96 \pm 0.14 \, \text{GeV}^{-1}, \ Q' = 0.4333 \pm 0.0243 \, \text{GeV}
$$

Corresponds to

$$
\chi^2_{d.o.f.} = 1.07
$$

Djurić — [Small x AdS/CFT](#page-0-0) [Deep Inelastic Scattering](#page-90-0) 34/61

Plots

Therefore we need to look at the hard-wall eikonal. We need the result in s, t space

Therefore we need to look at the hard-wall eikonal. We need the result in s, t space

$$
Im \chi_{hw}(\tau, t, z, z') = Im \chi_{hw}(\tau, 0, z, z')
$$

+
$$
\frac{\alpha_0 t}{2} \int_0^{\tau} d\tau' \int_0^{z_0} d\tilde{z} \, \tilde{z}^2 \times
$$

$$
\times Im \chi_{hw}(\tau', 0, z, \tilde{z}) Im \chi_{hw}(\tau - \tau', t, \tilde{z}, z')
$$

Therefore we need to look at the hard-wall eikonal. We need the result in s, t space

$$
Im \chi_{hw}(\tau, t, z, z') = Im \chi_{hw}(\tau, 0, z, z')
$$

+
$$
\frac{\alpha_0 t}{2} \int_0^{\tau} d\tau' \int_0^{z_0} d\tilde{z} \, \tilde{z}^2 \times
$$

$$
\times Im \chi_{hw}(\tau', 0, z, \tilde{z}) Im \chi_{hw}(\tau - \tau', t, \tilde{z}, z')
$$

Work is underway in evaluating this. We used an approximate treatment discussed on a previous slide which incorporates some of the important features.

Therefore we need to look at the hard-wall eikonal. We need the result in s, t space

$$
Im \chi_{hw}(\tau, t, z, z') = Im \chi_{hw}(\tau, 0, z, z')
$$

+
$$
\frac{\alpha_0 t}{2} \int_0^{\tau} d\tau' \int_0^{z_0} d\tilde{z} \, \tilde{z}^2 \times
$$

$$
\times Im \chi_{hw}(\tau', 0, z, \tilde{z}) Im \chi_{hw}(\tau - \tau', t, \tilde{z}, z')
$$

Work is underway in evaluating this. We used an approximate treatment discussed on a previous slide which incorporates some of the important features.

Fitting this expression we get the parameters:

Therefore we need to look at the hard-wall eikonal. We need the result in s, t space

$$
Im \chi_{hw}(\tau, t, z, z') = Im \chi_{hw}(\tau, 0, z, z')
$$

+
$$
\frac{\alpha_0 t}{2} \int_0^{\tau} d\tau' \int_0^{z_0} d\tilde{z} \, \tilde{z}^2 \times
$$

$$
\times Im \chi_{hw}(\tau', 0, z, \tilde{z}) Im \chi_{hw}(\tau - \tau', t, \tilde{z}, z')
$$

Work is underway in evaluating this. We used an approximate treatment discussed on a previous slide which incorporates some of the important features.

Fitting this expression we get the parameters:

χ

$$
\rho = 0.7833 \pm 0.0035, \ g_0^2 = 104.81 \pm 1.41,
$$
\n
$$
z_0 = 6.04 \pm 0.15 \, \text{GeV}^{-1}, \ Q' = 0.4439 \pm 0.0177 \, \text{GeV}
$$
\n
$$
\text{Dijuri} = \text{Small} \times \text{AdS}/\text{CFT}
$$
\n
$$
\text{Dep Inelastic Scattering}
$$
\n
$$
36/61
$$

Plots

We can also fit the data to 'effective Pomerons', by fixing Q^2 , and then fitting

We can also fit the data to 'effective Pomerons', by fixing Q^2 , and then fitting

```
F_2(x,Q^2) \sim (1/x)^{\epsilon_{eff}}
```
We can also fit the data to 'effective Pomerons', by fixing Q^2 , and then fitting

$$
F_2(x, Q^2) \sim (1/x)^{\epsilon_{eff}}
$$

By doing this we get the following
We can also fit the data to 'effective Pomerons', by fixing Q^2 , and then fitting

$$
F_2(x, Q^2) \sim (1/x)^{\epsilon_{eff}}
$$

By doing this we get the following

Figure: Q^2 -dependence for effective Pomeron intercept, $\alpha_P = 1 + \epsilon_{eff}.$

 \triangleright From the weak coupling approach, our methods are most directly comparable to Kowalski, Lipatov, Ross and Watt [arXiv:1005.0355].

- \triangleright From the weak coupling approach, our methods are most directly comparable to Kowalski, Lipatov, Ross and Watt [arXiv:1005.0355].
- \triangleright We both focus on Pomeron exchange, and the intercept is in the same region.
- \triangleright From the weak coupling approach, our methods are most directly comparable to Kowalski, Lipatov, Ross and Watt [arXiv:1005.0355].
- \triangleright We both focus on Pomeron exchange, and the intercept is in the same region.
- \triangleright We bothfit to the recent improved combined H1 + ZEUS data, which has smaller errors.
- \triangleright From the weak coupling approach, our methods are most directly comparable to Kowalski, Lipatov, Ross and Watt [arXiv:1005.0355].
- \triangleright We both focus on Pomeron exchange, and the intercept is in the same region.
- \triangleright We bothfit to the recent improved combined H1 + ZEUS data, which has smaller errors.
- ► Comparable number of parameters and χ^2 (Kowalski et al $\chi^2 \thicksim 1.2$), but the advantage of our approach is we can go to low Q^2 (the data with lowest Q^2 is at $0.10 GeV^2)$ whereas their approach stops at $Q^2 = 4 GeV^2$.

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

 \blacktriangleright the center of mass energy

$$
s = -(p+k_1)^2
$$

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

 \blacktriangleright the center of mass energy

$$
s = -(p + k_1)^2
$$

 \blacktriangleright the photon virtuality

$$
Q^2 = -k_1^{\mu} k_{1\mu} > 0
$$

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

 \blacktriangleright the center of mass energy

$$
s = -(p + k_1)^2
$$

 \blacktriangleright the photon virtuality

$$
Q^2=-k_1^\mu k_{1\mu}>0
$$

 \blacktriangleright the scaling variable

$$
x \thickapprox \frac{Q^2}{s}
$$

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x,Q^2) = \frac{1}{16\pi s^2} \int dt\, |W|^2\,.
$$

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)}\right]
$$

.

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)}\right].
$$

 \triangleright This has the previously mentioned form, we just need to supply the wavefunctions $\Psi(z)$ and $\Phi(\bar{z})$ for the photon and the proton.

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)}\right].
$$

- \triangleright This has the previously mentioned form, we just need to supply the wavefunctions $\Psi(z)$ and $\Phi(\bar{z})$ for the photon and the proton.
- \blacktriangleright In this analysis we use

$$
\Psi(z) = -C \frac{\pi^2}{6} z^3 K_1(Qz), \ \ \Phi(\bar{z}) = \bar{z}^3 \delta(\bar{z} - z_{\star})
$$

Let us now discuss the data we compared with.

 \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small x $(x < 0.013)$.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small x $(x < 0.013)$.
- \blacktriangleright In this region pomeron exchange is the dominant process.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small $x(x < 0.013)$.
- \triangleright In this region pomeron exchange is the dominant process.
- \triangleright We will look at both the differential and total exclusive cross sections.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small $x(x < 0.013)$.
- \blacktriangleright In this region pomeron exchange is the dominant process.
- \triangleright We will look at both the differential and total exclusive cross sections.
- \triangleright We have 52 points for the differential and 44 points for the cross section.

 \triangleright Fitting the differential cross section to the data, we get [Costa, MD, 2012]

 $g_0^2 = 1.95 \pm 0.85$, $z_* = 3.12 \pm 0.160 \text{GeV}^{-1}$, $\rho = 0.667 \pm 0.048$.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 1.33 \, .
$$

 \triangleright Fitting the differential cross section to the data, we get [Costa, MD, 2012]

 $g_0^2 = 1.95 \pm 0.85$, $z_* = 3.12 \pm 0.160 \text{GeV}^{-1}$, $\rho = 0.667 \pm 0.048$. corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 1.33 \, .
$$

If we exclude the lowest value of $|t|$ from each graph

$$
\chi^2_{d.o.f.} = 0.76 \, .
$$

 \triangleright Fitting the differential cross section to the data, we get $[Costa, MD, B]$ 2012]

 $g_0^2 = 1.95 \pm 0.85$, $z_* = 3.12 \pm 0.160 \text{GeV}^{-1}$, $\rho = 0.667 \pm 0.048$. corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 1.33 \, .
$$

If we exclude the lowest value of $|t|$ from each graph

$$
\chi^2_{d.o.f.} = 0.76 \, .
$$

 \triangleright For the cross section the values we get are

 $g_0^2 = 8.79 \pm 4.17$, $z_* = 6.43 \pm 2.67 \text{ GeV}^{-1}$, $\rho = 0.816 \pm 0.038$. with a χ^2

 \triangleright Fitting the differential cross section to the data, we get $[Costa, MD, B]$ 2012]

 $g_0^2 = 1.95 \pm 0.85$, $z_* = 3.12 \pm 0.160 \text{GeV}^{-1}$, $\rho = 0.667 \pm 0.048$. corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 1.33 \, .
$$

If we exclude the lowest value of $|t|$ from each graph

$$
\chi^2_{d.o.f.} = 0.76 \, .
$$

 \triangleright For the cross section the values we get are

 $g_0^2 = 8.79 \pm 4.17$, $z_* = 6.43 \pm 2.67 \text{ GeV}^{-1}$, $\rho = 0.816 \pm 0.038$. with a χ^2 2

$$
\chi^2_{d.o.f.} = 1.00
$$

Running the same fit using the eikonal approximation, instead of just keeping single pomeron exchange, does not improve the fits, due to the fact that the size of χ is small in this kinematical region.

 \blacktriangleright The parameters we obtain by fitting are

 $g_0^2 = 2.46 \pm 0.70$, $z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}$, $\rho = 0.712 \pm 0.038$, z_0 = 4.44 ± 0.82 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 0.51 \, .
$$

 \blacktriangleright The parameters we obtain by fitting are

 $g_0^2 = 2.46 \pm 0.70$, $z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}$, $\rho = 0.712 \pm 0.038$, z_0 = 4.44 ± 0.82 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 0.51 \, .
$$

 \triangleright The fit is better than the conformal one!

 \blacktriangleright The parameters we obtain by fitting are

 $g_0^2 = 2.46 \pm 0.70$, $z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}$, $\rho = 0.712 \pm 0.038$, z_0 = 4.44 ± 0.82 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 0.51 \, .
$$

- \triangleright The fit is better than the conformal one!
- ► Because confinement effects can still be felt at the lowest value of $-t$, relatively close to Λ_{QCD} .

 \blacktriangleright The parameters we obtain by fitting are

 $g_0^2 = 2.46 \pm 0.70$, $z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}$, $\rho = 0.712 \pm 0.038$, z_0 = 4.44 ± 0.82 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 0.51 \, .
$$

- \triangleright The fit is better than the conformal one!
- ► Because confinement effects can still be felt at the lowest value of $-t$, relatively close to Λ_{QCD} .
- \blacktriangleright For the cross section

 $g_0^2 = 6.65 \pm 2.30$, $z_* = 4.86 \pm 2.87 \text{ GeV}^{-1}$, $\rho = 0.811 \pm 0.036$, z_0 = 8.14 ± 2.96 GeV⁻¹. corresponding to a χ^2 of

 \blacktriangleright The parameters we obtain by fitting are

 $g_0^2 = 2.46 \pm 0.70$, $z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}$, $\rho = 0.712 \pm 0.038$, z_0 = 4.44 ± 0.82 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 0.51 \, .
$$

- \triangleright The fit is better than the conformal one!
- ► Because confinement effects can still be felt at the lowest value of $-t$, relatively close to Λ_{QCD} .
- \blacktriangleright For the cross section

 $g_0^2 = 6.65 \pm 2.30$, $z_* = 4.86 \pm 2.87 \text{ GeV}^{-1}$, $\rho = 0.811 \pm 0.036$, z_0 = 8.14 ± 2.96 GeV⁻¹.

corresponding to a χ^2 of

$$
\chi^2_{d.o.f.} = 1.03 \, .
$$

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

What is Vector Meson Production?

Vector meson production occurs in the scattering between an offshell photon and a proton.
What is Vector Meson Production?

Vector meson production occurs in the scattering between an offshell photon and a proton.

What is Vector Meson Production?

Vector meson production occurs in the scattering between an offshell photon and a proton.

The vector mesons consist of a quark-antiquark pair, and have the same quantum numbers as the photon, $J^{PC}=1^{--}.$ The production of the ρ^0, ω, ϕ and J/Ψ was measured at HERA.

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x,Q^2) = \frac{1}{16\pi s^2} \int dt\, |W|^2\,.
$$

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\overline{z}}{\overline{z}^3} \Psi(z) \Phi(\overline{z}) \left[1 - e^{i\chi(S,L)}\right]
$$

.

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)}\right].
$$

 \triangleright This has the previously mentioned form, we just need to supply the wavefunctions $\Psi(z)$ and $\Phi(\bar{z})$ for the photon and the proton.

$$
\frac{d\sigma}{dt}(x,Q^2,t) = \frac{|W|^2}{16\pi s^2},
$$

and

$$
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt \, |W|^2.
$$

 \blacktriangleright Here W is the scattering amplitude

$$
W = 2isQQ' \int dl_{\perp} e^{iq_{\perp} \cdot l_{\perp}} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)}\right].
$$

- \triangleright This has the previously mentioned form, we just need to supply the wavefunctions $\Psi(z)$ and $\Phi(\bar{z})$ for the photon and the proton.
- In this analysis we use $[Costa, MD, Evans, 2013]$

$$
\Psi_n(z) = -(\sqrt{C\frac{\pi^2}{6}}z^2 K_n(Qz))(\frac{\sqrt{2}}{\xi J_1(\xi)}z^2 J_n(mz)), \ \ \Phi(\bar{z}) = \bar{z}^3 \delta(\bar{z} - z_\star)
$$

Let us now discuss the data we we compared with.

 \triangleright We will use data collected at the HERA particle accelerator, by the H1 experiment, taken from their latest publications.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 experiment, taken from their latest publications.
- All the data is at small x $(x < 0.01)$.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 experiment, taken from their latest publications.
- All the data is at small x $(x < 0.01)$.
- In this region pomeron exchange is the dominant process.

- \triangleright We will use data collected at the HERA particle accelerator, by the H1 experiment, taken from their latest publications.
- All the data is at small x $(x < 0.01)$.
- In this region pomeron exchange is the dominant process.
- \triangleright We will look at both the differential and total exclusive cross sections.

Differential cross section for the ρ meson:

0 0.2 0.4 0.6 0.8 1 10^{-1} ₀ $10⁰$ $10¹$ 10^{2} t de e $\mathrm{W} = 45~\mathrm{GeV}$ $-Q^2 = 5 \ GeV^2$ 10⁻¹**0** 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $10⁰$ $\frac{10^{1}}{25}$ 10^2 0.4 φ**, W = 75 GeV** $= 3.3 \text{ GeV}^2$ $Q^2 = 6.6 \ GeV^2$ $= 15.8 \ GeV^2$ 0 0.2 0.4 0.6 0.8 1 10−1 10^{0} 10^{1} 10^{2} t dag a $\rm W=102~GeV$ $-Q^2 = 5 \ GeV^2$ 0 0.2 0.4 0.6 0.8 1 10−1 $10⁰$ 10^{1} 10^2 t dag a $\mathrm{W} = 116~\mathrm{GeV}$ $-Q^2 = 5 \ GeV^2$ Djurić — [Small x AdS/CFT](#page-0-0) **Vector Meson Production** 63/61

Differential cross section for the ϕ meson (hardwall model):

Differential cross section for the J/Ψ meson (hardwall model):

Cross sections for the conformal model:

Cross sections for the hardwall model:

Outline

[Introduction](#page-2-0)

[Pomeron in AdS](#page-12-0)

[Deep Inelastic Scattering](#page-90-0)

[Deeply Virtual Compton Scattering](#page-149-0)

[Vector Meson Production](#page-178-0)

[Conclusions](#page-197-0)

We thus conclude today's talk. We have seen some interesting methods for applying gauge/gravity duality to study small x physics. In particular we can study a wide range of HERA processes, and in kinematical regions not accessible by traditional methods.

We thus conclude today's talk. We have seen some interesting methods for applying gauge/gravity duality to study small x physics. In particular we can study a wide range of HERA processes, and in kinematical regions not accessible by traditional methods. We saw that we need our theory to include confinement if we want it to be realistic

We thus conclude today's talk. We have seen some interesting methods for applying gauge/gravity duality to study small x physics. In particular we can study a wide range of HERA processes, and in kinematical regions not accessible by traditional methods. We saw that we need our theory to include confinement if we want it to be realistic

We thus conclude today's talk. We have seen some interesting methods for applying gauge/gravity duality to study small x physics. In particular we can study a wide range of HERA processes, and in kinematical regions not accessible by traditional methods. We saw that we need our theory to include confinement if we want it to be realistic

The above order of lines is the opposite of what is generally thought. Is it an artifact of our model? Djurić — [Small x AdS/CFT](#page-0-0) [Conclusions](#page-197-0) 58/61

 \triangleright We now have 3 processes (DIS, DVCS and vector meson production) where the AdS (BPST) pomeron exchange gives excellent agreement with experiment in the strong coupling region, and even up to relatively high O^2

- \triangleright We now have 3 processes (DIS, DVCS and vector meson production) where the AdS (BPST) pomeron exchange gives excellent agreement with experiment in the strong coupling region, and even up to relatively high O^2
- \triangleright Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.

- \triangleright We now have 3 processes (DIS, DVCS and vector meson production) where the AdS (BPST) pomeron exchange gives excellent agreement with experiment in the strong coupling region, and even up to relatively high O^2
- \triangleright Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- \blacktriangleright The value of the pomeron intercept is in the region $1.2 1.4$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).

- \triangleright We now have 3 processes (DIS, DVCS and vector meson production) where the AdS (BPST) pomeron exchange gives excellent agreement with experiment in the strong coupling region, and even up to relatively high O^2
- \triangleright Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- \blacktriangleright The value of the pomeron intercept is in the region $1.2 1.4$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).
- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.

- \triangleright We now have 3 processes (DIS, DVCS and vector meson production) where the AdS (BPST) pomeron exchange gives excellent agreement with experiment in the strong coupling region, and even up to relatively high O^2
- \triangleright Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- \blacktriangleright The value of the pomeron intercept is in the region $1.2 1.4$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).
- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.
- \triangleright The hard wall model, although a simple modification of AdS, seems to capture effects of confinement well. Interesting to repeat some of the calculations using a different confinement model to identify precisely what features are model independent.

Some more work that is under way

 \triangleright We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study proton-proton total cross section.

- \triangleright We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study proton-proton total cross section.
- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.

- \triangleright We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study proton-proton total cross section.
- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.
- \triangleright Recent paper by Brower, MD and Tan applies double pomeron exchange to Higgs production [JHEP 1209 (2012) 097]

- \triangleright We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study proton-proton total cross section.
- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.
- \triangleright Recent paper by Brower, MD and Tan applies double pomeron exchange to Higgs production [JHEP 1209 (2012) 097]
- \triangleright Eventually it would be good to have a single set of parameters that fits several different processes.

- \triangleright We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study proton-proton total cross section.
- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.
- \triangleright Recent paper by Brower, MD and Tan applies double pomeron exchange to Higgs production [JHEP 1209 (2012) 097]
- \triangleright Eventually it would be good to have a single set of parameters that fits several different processes.
- \triangleright We can also try to use a different AdS model of confinement (for example the soft wall model [Brower, MD, Raben, Tan, in preparation]) and combine our methods with work by others (for example on the vector meson wavefunctions).

