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HERA is the largest electron - proton collider ever built, and has
tremendously improved our knowledge of the structure of the proton. It
operated from 1992-2007, and collected a wealth of small x data. Two
crucial (related) discoveries:

I Cross sections for many different processes (DIS, DVCS, VM
production...) show a power growth with 1/x.

I The same, universal gluon distribution functions describe these
processes, and gluons dominate at small x.

I These point to a universal Pomeron exchange as the dominant
process.

I The BFKL equation sums the leading log 1
x diagrams for interaction

of gluon on gluon, and leads to power behaviour for the cross section
- QCD Pomeron.

I This perturbative QCD approach works at high Q2, and the goal is to
extend it as much as possible into the low Q2 region, typically up to
somewhere of the order Q2 = 1− 4GeV 2.

Djurić — Small x AdS/CFT Introduction 4/61



HERA is the largest electron - proton collider ever built, and has
tremendously improved our knowledge of the structure of the proton. It
operated from 1992-2007, and collected a wealth of small x data. Two
crucial (related) discoveries:

I Cross sections for many different processes (DIS, DVCS, VM
production...) show a power growth with 1/x.

I The same, universal gluon distribution functions describe these
processes, and gluons dominate at small x.

I These point to a universal Pomeron exchange as the dominant
process.

I The BFKL equation sums the leading log 1
x diagrams for interaction

of gluon on gluon, and leads to power behaviour for the cross section
- QCD Pomeron.

I This perturbative QCD approach works at high Q2, and the goal is to
extend it as much as possible into the low Q2 region, typically up to
somewhere of the order Q2 = 1− 4GeV 2.
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I At very small x, non-linear effects also become important.

I Our goal is to apply an alternative method to study the
non-perturbative and saturation regions, and also see how much can
they be applied to the higher Q2 region as well.
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Djurić — Small x AdS/CFT Introduction 5/61



Outline

Introduction

Pomeron in AdS

Deep Inelastic Scattering

Deeply Virtual Compton Scattering

Vector Meson Production

Conclusions
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I Consider 2→ 2 scattering.

I Work in the Regge limit

s� t

I We can expand the amplitude into partial waves

A(s, t) = 16π
∞∑
j=0

(2j + 1)Aj(t)Pj(cos θt),

I In the Regge limit,

Pj(1 +
2s

t
)→ Γ(2j + 1)

Γ2(j + 1)
(
s

2t
)j ∼ f(t)sj .

I If exchanged particle has spin j

A(s, t) ∼ sj
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I Optical theorem:

σtot =
1

s
=A(s, 0)

I Experimentally
σtot ∼ s0.08

I The amplitude will depend on an infinite number of exchanged
particles.

I We can continue the amplitude into the complex plane

A±(j, t) =

{
A+
j (t) j even

A−j (t) j odd

I A(j, t) will have as singularities poles at integer j for fixed t. As we
change t, the position of the pole will change, leading to a trajectory

j = α(t)
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I We can write A(s, t) as a contour integral in the complex plane

A±(s, t) = 8π

∞∑
j=0

(2j + 1)A±j (t)(Pj(zt)± Pj(−zt))

= 8πi

∫
C
dj(2j + 1)A±(j, t)

P (j,−zt)± P (j, zt)

sin(πj)

I We next deform the contour C to a contour C ′ parallel to imaginary
axis and real part −1/2

A±(s, t) = −16π2
∑
i

(2α±i (t) + 1)β±i (t)

sin(πα±i (t))
(P (α±i (t),−zt)±P (α±i (t), zt))

I α±i (t) is the position of the pole in the j plane.

I Take advantage of the asymptotic form of the Legendre polynomials

√
πP (j, z) ∼

Γ(j + 1/2)

Γ(j + 1)
(2z)j <j ≥ −1/2
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Djurić — Small x AdS/CFT Pomeron in AdS 9/61



I This will give us a sum in powers of s. At high energy, we can keep
just the leading term

A±(s, t) ∼ (1± e−iπα±(t))β(t)(
s

s0
)α
±(t).

I α(t) is the term with the largest value of <αi(t)
I Amplitude corresponds to an exchange of a whole trajectory of

particles α±(t) .

I Equivalently, we are exchanging a ‘Reggeon’ - object with spin α±(t).
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Djurić — Small x AdS/CFT Pomeron in AdS 10/61



I This will give us a sum in powers of s. At high energy, we can keep
just the leading term

A±(s, t) ∼ (1± e−iπα±(t))β(t)(
s

s0
)α
±(t).

I α(t) is the term with the largest value of <αi(t)
I Amplitude corresponds to an exchange of a whole trajectory of

particles α±(t) .

I Equivalently, we are exchanging a ‘Reggeon’ - object with spin α±(t).
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Figure: Regge trajectories.
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Pomeron

I Look again at the factor

1± e−iπα±(t)

I When α+(t) is odd, 1 + e−iπα
+(t) = 0, and similarly when α−(t) is

even, 1− e−iπα−(t) = 0.

I Two sets of trajectories, one with only particles with even
non-negative spin, and one with particles with odd positive spin.

I The leading Reggeon which has the quantum numbers of the vacuum,
C = +1 and I = 0, is known as the Pomeron.

I The intercept α(0) > 1 leading to non-vanishing

σtot ∼ sα(0)−1
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Pomeron and the Eikonal Approximation

I According to the Froissart bound

σtot ≤ πc log2(
s

s0
)

I Hence the Pomeron exchange violates this bound.

I Eventually effects beyond one Pomeron exchange become important.

I The eikonal approximation

A(s,−q⊥2) = −2is

∫
d2b e−ib⊥·q⊥ (eiχ(s,b) − 1)

I Satisfies the unitarity bound, as long as =χ > 0

I We can expand the exponential to get

A(s,−q⊥2) = −2is

∫
d2be−ib⊥·q⊥(iχ+

(iχ)2

2
+ · · · ) .
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This would correspond to summing Pomeron exchange to all orders, but
ignoring all non-linear interactions between the Pomerons.

I The diagrams we sum are
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We will now turn to using the AdS/CFT correspondence to study strong
coupling. The correspondence relates operators in N = 4SYM to states
in string theory on AdS5 × S5. It is valid for large ’t Hooft coupling λ.

I We will work with the metric

ds2 =
R2

z2
(dz2 + ηµνdx

µdxν) +R2dΩ5

I In the hardwall model, we have a cut-off

0 < z < z0

I The cutoff position will roughly correspond to

z0 '
1

ΛQCD
.
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I Let us write the scattering amplitude [Brower, Polchinski, Strassler,
Tan, 2006]

AWLWR
=

∫
d2w〈WRw

L0−2w̄L̃0−2WL〉

I We can insert a vertex operator

AWLWR
= 〈WRV+

P (T )〉〈V−P (T )WL〉
I where

V±P
def
==

(
2

α′
∂X± ¯∂X

±
)1+α′t

4

e∓ik·X

I This operator will satisfy the on shell condition

L0V±P = L̄0V±P = V±P
I We can show that this would lead to amplitudes

A(s, t) ∼ (α′s)α(t)

Djurić — Small x AdS/CFT Pomeron in AdS 16/61



I Let us write the scattering amplitude [Brower, Polchinski, Strassler,
Tan, 2006]

AWLWR
=

∫
d2w〈WRw

L0−2w̄L̃0−2WL〉

I We can insert a vertex operator

AWLWR
= 〈WRV+

P (T )〉〈V−P (T )WL〉
I where

V±P
def
==

(
2

α′
∂X± ¯∂X

±
)1+α′t

4

e∓ik·X

I This operator will satisfy the on shell condition

L0V±P = L̄0V±P = V±P
I We can show that this would lead to amplitudes

A(s, t) ∼ (α′s)α(t)
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I For vertex operators in AdS we replace them by the flat space vertex
operators multiplied by φ(r). For the Pomeron

I

VP (j,±) = (∂X±∂X±)
j
2 e∓ik·Xφ±j(r).

I They must satisfy the on-shell condition.

I

[
j − 2

2
− α′

4
∆j ]e

∓ik·Xφ±j(r) = 0

I where ∆j = (r/R)j(∆0)(r/R)−j . And ∆0 is the scalar Laplacian in
curved space.
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I This will give us for the physical state condition

[j − 2− α′t

2
e−2u − 1

2
√
λ

(∂2
u − 4)]φ±(u) = 0

I It can be solved

VP (j, ν, k,±) ∼
(∂X±∂X±)

j
2 e∓ik·Xe(j−2)uK±2iν(|t|1/2e−u)

I and for the amplitude we would have

T (+) ∼
∫

dj

2πi

∫
dνν sinh 2πν

π

Π(j) sj

j − j(+)
0 +Dν2

× 〈WR0 VP (j, ν, k,−)〉 〈VP (j, ν, k,+)WL0〉

I with j
(+)
0 given by

j
(+)
0 = 2− 2/

√
λ+O(1/λ) .

and D = 2/
√
λ.
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I The most direct application is to calculate scattering amplitudes. In
the case of 2→ 2 scattering, the above expressions can be simplified.

I We can write the scattering amplitude as

A(s, t) = 2s

∫
d2le−il⊥·q⊥

∫
dzdz̄ P13(z)P24(z̄)χ(s, l, z, z̄)

I P13 and P24 are the products of incoming and outgoing scattering
states, and χ is the exchange kernel.

I For the Pomeron:

χ(τ, L) = (cot(
πρ

2
) + i)g2

0e
(1−ρ)τ L

sinhL

exp(−L
2

ρτ )

(ρτ)3/2

I Due to conformal invariance, χ is a function of only two variables

L = log(1 + v +
√
v(2 + v) )

τ = log(
ρ

2
zz′s)
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Djurić — Small x AdS/CFT Pomeron in AdS 19/61



I The most direct application is to calculate scattering amplitudes. In
the case of 2→ 2 scattering, the above expressions can be simplified.

I We can write the scattering amplitude as

A(s, t) = 2s

∫
d2le−il⊥·q⊥

∫
dzdz̄ P13(z)P24(z̄)χ(s, l, z, z̄)

I P13 and P24 are the products of incoming and outgoing scattering
states, and χ is the exchange kernel.

I For the Pomeron:

χ(τ, L) = (cot(
πρ

2
) + i)g2

0e
(1−ρ)τ L

sinhL

exp(−L
2

ρτ )

(ρτ)3/2

I Due to conformal invariance, χ is a function of only two variables

L = log(1 + v +
√
v(2 + v) )

τ = log(
ρ

2
zz′s)
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Hard wall pomeron

I Obtained by placing a sharp cut-off on the radial AdS coordinate at
z = z0.

I First notice that at t = 0 χ for conformal pomeron exchange can be
integrated in impact parameter

χ(τ, t = 0, z, z̄) = iπ g2
0

(
cot
(πρ

2

)
+ i
)

(zz̄) e(1−ρ)τ e
− (ln(z̄/z))2

ρτ

(ρτ)1/2

I Similarly, the t = 0 result for the hard-wall model can also be written
explicitly

χhw(τ, t = 0, z, z̄) = χ(τ, 0, z, z̄) + F(τ, z, z̄)χ(τ, 0, z, z2
0/z̄) .

I When t 6= 0, we will use an approximation

χhw(τ, l, z, z̄) = C(τ, z, z̄)D(τ, l)χ
(0)
hw(τ, l, z, z̄)
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I The function

F(τ, z, z̄) = 1− 4
√
πτ eη

2
erfc(η) , η =

− log(zz̄/z2
0) + 4τ√

4τ

is set by the boundary conditions at the wall and represents the
relative importance of the two terms

I Varies between −1 and 1, approaching −1 at either large z, which
roughly corresponds to small Q2, or at large τ corresponding to small
x.

I It is therefore in these regions that confinement is important!

I Eikonal approximation in AdS space (Brower, Strassler, Tan;
Cornalba,Costa,Penedones)

A(s, t) = 2is

∫
d2le−il⊥·q⊥

∫
dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

I Note that these methods can be generalized to Odderon exchange as
well [Brower, MD, Tan, 2008].
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roughly corresponds to small Q2, or at large τ corresponding to small
x.

I It is therefore in these regions that confinement is important!

I Eikonal approximation in AdS space (Brower, Strassler, Tan;
Cornalba,Costa,Penedones)

A(s, t) = 2is

∫
d2le−il⊥·q⊥

∫
dzdz̄ P13(z)P24(z̄)(1− eiχ(s,b,z,z̄))

I Note that these methods can be generalized to Odderon exchange as
well [Brower, MD, Tan, 2008].
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I The weak and strong coupling Pomeron exchange kernels have a
remarkably similar form.

I At t = 0

Weak coupling:

K(k⊥, k
′
⊥, s) =

sj0√
4πD log s

e−(log k⊥−log k′⊥)2/4D log s

j0 = 1 +
log 2

π2
λ, D =

14ζ(3)

π
λ/4π2

Strong coupling:

K(z, z′, s) =
sj0√

4πD log s
e−(log z−log z′)2/4D log s

j0 = 2− 2√
λ
, D =

1

2
√
λ
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Parameters

Let us enumarete the parameters that appear in our expressions that will
be common to all the processes we consider next:

I g2
0 - the coupling of the Pomeron to the external states.

I ρ = 2√
λ

the Pomeron intercept (j0 = 2− ρ), also related to the ’t

Hooft coupling λ.

I z∗, the size of the target probed by the Pomeron.

I The above three are common to both the conformal and the hard wall
models, and the latter has an additional parameter

I z0 ' 1
ΛQCD

, the position of the hard wall in AdS space, intuitively

should be related to ΛQCD
I Only three parameters for the conformal model, and 4 for the hard

wall.
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What is DIS?

Deep Inelastic Scattering is the scattering between an electron and a
proton.

Figure: DIS in dipole picture (Mueller 1990)

The basic kinematical variables we need for describing this process are

I center of mass energy s, the virtuality Q2 and the scaling variable x

s = −(P + k)2

Q2 = −qµqµ = −(k − k′)2 > 0

x ≈
Q2

s
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I We are interested in calculating the structure function

F2(x,Q2) = x
∑
q

e2
q [q(x,Q

2) + q̄(x,Q2)]

I It is related to the total cross section by the relation

F2(x,Q2) =
Q2

4π2αEM
σtot(x,Q

2)

I To calculate the total cross section we can use the optical theorem

σtot =
1

s
=A(s, t = 0)
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The Data

Let us now discuss the data we compared with.

I We will use data collected at the HERA particle accelerator, by the
H1 & ZEUS experiments (Aaron et al. JHEP 2010).

I We will consider only low x physics, which in this talk will mean
x < 0.01.

I In this region the photon and the partons do not interact directly,
rather the photon emits a Pomeron which interacts with the parton.

I We will look at 0.10GeV 2 < Q2 < 400GeV 2.

I At lower or higher Q2 there is no experimental data with x < 0.01.
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Djurić — Small x AdS/CFT Deep Inelastic Scattering 27/61



The Data

Let us now discuss the data we compared with.

I We will use data collected at the HERA particle accelerator, by the
H1 & ZEUS experiments (Aaron et al. JHEP 2010).

I We will consider only low x physics, which in this talk will mean
x < 0.01.

I In this region the photon and the partons do not interact directly,
rather the photon emits a Pomeron which interacts with the parton.

I We will look at 0.10GeV 2 < Q2 < 400GeV 2.

I At lower or higher Q2 there is no experimental data with x < 0.01.
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As we saw, we are going to calculate F2 by relating it to the total cross
section. This in turn we will calculate using the optical theorem, for which
we need the forward scattering amplitude at t = 0. Putting it all together,
using the eikonal approximation we get [Brower, MD, Sarcevic, Tan, 2010]

F2(x,Q2) =
Q2

2π2

∫
d2b

∫
dz

∫
dz′P13(z,Q2)P24(z′)Re

(
1− eiχ(s,b,z,z′)

)

We need to supply the wavefunctions for the photon and the proton. For
the photon we will consider an R boson propagating through the bulk that
couples to leptons on the boundary (Polchinski, Strassler 2003)

P13(z,Q2) =
1

z
(Qz)2(K2

0 (Qz) +K2
1 (Qz)),
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We would also need a wavefunction associated to the proton φp(z). For
the current analysis, we will assume that the wave function is sharply
peaked near the IR boundary z0, with 1/Q′ ≤ z0, with Q′ of the order of
the proton mass. For simplicity, we will simply replace P24 by a sharp
delta-function

P24(z′) ≈ δ(z′ − 1/Q′).

Similarly, for P13 which is peaked around z ' 1/Q, we will replace

P13(z) ≈ δ(z − 1/Q),
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Conformal Limit

First we will look at the conformal limit, using single Pomeron exchange.
The b space integration can be performed explicitly

∫
d2b Im χ(s, b, z, z′) =

g2
0

16

√
ρ3

π
(zz′) e(1−ρ)τ

exp(−(log z−log z′)2

ρτ )

τ 1/2
.

I For single Pomeron exchange, the imaginary part is enough due to the
optical theorem.

I The structure function F2 can be expressed as

F2(x,Q2) =
g2

0ρ
3/2

32π5/2

∫
dzdz′P13(z,Q2)P24(z′)(zz′Q2)

× e(1−ρ)τ
exp(−(log z−log z′)2

ρτ )

τ 1/2
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Hard-wall

Similarly for the hard-wall model we would have

Im χhw(s, t = 0, z, z′) = Im χc(τ, 0, z, z
′)+F(z, z′, τ) Im χc(τ, 0, z, z

2
0/z
′),

leading to the expression for F2 with confinement

F2(x,Q2) =
g2

0ρ
3/2

32π5/2

∫
dzdz′P13(z,Q2)P24(z′)(zz′Q2) e(1−ρ)τ

×
(
e
− log2 z/z′

ρτ

τ1/2
+ F(z, z′, τ) e

−
log2 zz′/z20

ρτ

τ1/2

)

Where

F(u, u′, τ) = 1− 4
√
πτ eη

2
erfc(η) , η =

u+ u′ + 4τ√
4τ

.
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×
(
e
− log2 z/z′

ρτ

τ1/2
+ F(z, z′, τ) e

−
log2 zz′/z20

ρτ

τ1/2

)

Where

F(u, u′, τ) = 1− 4
√
πτ eη

2
erfc(η) , η =

u+ u′ + 4τ√
4τ

.
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Examine

Let us make some comments about these expressions.

I Both of them have a factor

e(1−ρ)τ ∼ (
1

x
)1−ρ

I This will violate the Froissart bound.

I The difference between the conformal and confinement depends on
the size of the function F .

I F at fixed z, z′, goes to 1 as τ → 0 and to −1 as τ →∞. Hence, at
small x, F → −1 and confinement leads to a partial cancelation for
the growth rate. Since F is continuous, there will be a region over
which F ∼ 0, and, in this region, there is little difference between the
hard-wall and the conformal results.
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Let us look at the graph of F in the region where there is data

Figure: Contour plot for coefficient function F as a function of log(1/z) and
log(1/x), with z′ ' z0 fixed, z0 ∼ Λ−1QCD.

Djurić — Small x AdS/CFT Deep Inelastic Scattering 33/61



Let us look at the graph of F in the region where there is data

Figure: Contour plot for coefficient function F as a function of log(1/z) and
log(1/x), with z′ ' z0 fixed, z0 ∼ Λ−1QCD.
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Single Pomeron fits

Finally, let us present the results of our fits:

I For the conformal single Pomeron exchange the parameters are:

ρ = 0.774± 0.0103, g2
0 = 110.13± 1.93, Q′ = 0.5575± 0.0432 GeV

I Corresponds to

χ2
d.o.f. = 11.7

I For the hard-wall model we get a much better fit. Parameters are:

ρ = 0.7792± 0.0034, g2
0 = 103.14± 1.68,

z0 = 4.96± 0.14GeV −1, Q′ = 0.4333± 0.0243 GeV

I Corresponds to

χ2
d.o.f. = 1.07
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Plots

Figure: Global fits to the combined ZEUS-H1 small-x data. Dotted red lines are
for single conformal BPST Pomeron and dotted blue lines are for single hard-wall
BPST Pomeron.
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As we said, single Pomeron exchange violates the unitarity bound.
Therefore we will also do the fits using the eikonal approximation. The
conformal eikonal will not improve the results, and will still lead to the
violation of the unitarity bound.

Therefore we need to look at the hard-wall eikonal. We need the result in
s, t space

Im χhw(τ, t, z, z′) = Im χhw(τ, 0, z, z′)

+
α0t

2

∫ τ

0
dτ ′
∫ z0

0
dz̃ z̃2 ×

× Im χhw(τ ′, 0, z, z̃)Im χhw(τ − τ ′, t, z̃, z′)

Work is underway in evaluating this. We used an approximate treatment
discussed on a previous slide which incorporates some of the important
features.
Fitting this expression we get the parameters:

ρ = 0.7833± 0.0035, g2
0 = 104.81± 1.41,

z0 = 6.04± 0.15GeV −1, Q′ = 0.4439± 0.0177 GeV

χ2
d.o.f = 1.04
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Plots
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We can also fit the data to ‘effective Pomerons’, by fixing Q2, and then
fitting

F2(x,Q2) ∼ (1/x)εeff

By doing this we get the following

Figure: Q2-dependence for effective Pomeron intercept, αP = 1 + εeff .
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I From the weak coupling approach, our methods are most directly
comparable to Kowalski, Lipatov, Ross and Watt [arXiv:1005.0355].

I We both focus on Pomeron exchange, and the intercept is in the
same region.

I We bothfit to the recent improved combined H1 + ZEUS data, which
has smaller errors.

I Comparable number of parameters and χ2 (Kowalski et al χ2 ∼ 1.2),
but the advantage of our approach is we can go to low Q2 (the data
with lowest Q2 is at 0.10GeV 2) whereas their approach stops at
Q2 = 4GeV 2.
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What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell
photon and a proton.

= + · · ·k1

k2

k3

k4
p

γ∗ γ

p

e−
e−

The basic kinematical variables we need for describing this process are

I the center of mass energy

s = −(p+ k1)2

I the photon virtuality
Q2 = −kµ1k1µ > 0

I the scaling variable

x ≈
Q2

s
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I We are interested in calculating the differential and exclusive cross
sections

dσ

dt
(x,Q2, t) =

|W |2
16πs2

,

and

σ(x,Q2) =
1

16πs2

∫
dt |W |2 .

I Here W is the scattering amplitude

W = 2isQQ′
∫
dl⊥ e

iq⊥·l⊥
∫
dz

z3

dz̄

z̄3
Ψ(z) Φ(z̄)

[
1− eiχ(S,L)

]
.

I This has the previously mentioned form, we just need to supply the
wavefunctions Ψ(z) and Φ(z̄) for the photon and the proton.

I In this analysis we use

Ψ(z) = −C π2

6
z3K1(Qz), Φ(z̄) = z̄3 δ(z̄ − z?)
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The Data

Let us now discuss the data we compared with.

I We will use data collected at the HERA particle accelerator, by the
H1 & ZEUS experiments, taken from their latest publications.

I All the data is at small x (x < 0.013).

I In this region pomeron exchange is the dominant process.

I We will look at both the differential and total exclusive cross sections.

I We have 52 points for the differential and 44 points for the cross
section.
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Conformal Pomeron

I Fitting the differential cross section to the data, we get [Costa, MD,
2012]

g2
0 = 1.95± 0.85 , z∗ = 3.12± 0.160GeV−1 , ρ = 0.667± 0.048 .

corresponding to a χ2 of

χ2
d.o.f. = 1.33 .

I If we exclude the lowest value of |t| from each graph

χ2
d.o.f. = 0.76 .

I For the cross section the values we get are

g2
0 = 8.79± 4.17 , z∗ = 6.43± 2.67 GeV−1 , ρ = 0.816± 0.038 .

with a χ2

χ2
d.o.f. = 1.00
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Running the same fit using the eikonal approximation, instead of just
keeping single pomeron exchange, does not improve the fits, due to the
fact that the size of χ is small in this kinematical region.
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Hard wall pomeron

I The parameters we obtain by fitting are

g2
0 = 2.46 ± 0.70 , z∗ = 3.35± 0.41 GeV−1, ρ = 0.712± 0.038 ,

z0 = 4.44± 0.82 GeV−1.

corresponding to a χ2 of

χ2
d.o.f. = 0.51 .

I The fit is better than the conformal one!
I Because confinement effects can still be felt at the lowest value of −t,

relatively close to ΛQCD.
I For the cross section

g2
0 = 6.65± 2.30 , z∗ = 4.86± 2.87 GeV−1, ρ = 0.811± 0.036 ,

z0 = 8.14± 2.96 GeV−1.

corresponding to a χ2 of

χ2
d.o.f. = 1.03 .
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What is Vector Meson Production?

Vector meson production occurs in the scattering between an offshell
photon and a proton.

The vector mesons consist of a quark-antiquark pair, and have the same
quantum numbers as the photon, JPC = 1−−. The production of the
ρ0, ω, φ and J/Ψ was measured at HERA.
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I We are interested in calculating the differential and exclusive cross
sections

dσ

dt
(x,Q2, t) =

|W |2
16πs2

,

and

σ(x,Q2) =
1

16πs2

∫
dt |W |2 .

I Here W is the scattering amplitude

W = 2isQQ′
∫
dl⊥ e

iq⊥·l⊥
∫
dz

z3

dz̄

z̄3
Ψ(z) Φ(z̄)

[
1− eiχ(S,L)

]
.

I This has the previously mentioned form, we just need to supply the
wavefunctions Ψ(z) and Φ(z̄) for the photon and the proton.

I In this analysis we use [Costa, MD, Evans, 2013]

Ψn(z) = −(

√
C
π2

6
z2Kn(Qz))(

√
2

ξJ1(ξ)
z2Jn(mz)), Φ(z̄) = z̄3 δ(z̄−z?)
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The Data

Let us now discuss the data we we compared with.

I We will use data collected at the HERA particle accelerator, by the
H1 experiment, taken from their latest publications.

I All the data is at small x (x < 0.01).

I In this region pomeron exchange is the dominant process.

I We will look at both the differential and total exclusive cross sections.
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Differential cross section for the ρ meson:
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Differential cross section for the φ meson (hardwall model):
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Differential cross section for the J/Ψ meson (hardwall model):
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Cross sections for the conformal model:
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Cross sections for the hardwall model:
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We thus conclude today’s talk. We have seen some interesting methods
for applying gauge/gravity duality to study small x physics. In particular
we can study a wide range of HERA processes, and in kinematical regions
not accessible by traditional methods.

We saw that we need our theory to
include confinement if we want it to be realistic

The above order of lines is the opposite of what is generally thought. Is it
an artifact of our model?
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Summary:

I We now have 3 processes (DIS, DVCS and vector meson production)
where the AdS (BPST) pomeron exchange gives excellent agreement
with experiment in the strong coupling region, and even up to
relatively high Q2

I Hence string theory on AdS is giving us interesting insights into
non-perturbative scattering.

I The value of the pomeron intercept is in the region 1.2− 1.4 which is
in the crossover region between strong and weak coupling, and a lot
of the equations have a form which is very similar both at weak and
at strong coupling (but χ is different).

I It might therefore be possible to extend some of the insights we gain
even into the weak coupling regime.

I The hard wall model, although a simple modification of AdS, seems
to capture effects of confinement well. Interesting to repeat some of
the calculations using a different confinement model to identify
precisely what features are model independent.
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Future work

Some more work that is under way

I We should apply these methods to other processes where pomeron
exchange is dominant. Next step is to study proton-proton total cross
section.

I It is also interesting to extend these methods beyond 2→ 2
scattering.

I Recent paper by Brower, MD and Tan applies double pomeron
exchange to Higgs production [JHEP 1209 (2012) 097]

I Eventually it would be good to have a single set of parameters that
fits several different processes.

I We can also try to use a different AdS model of confinement (for
example the soft wall model [Brower, MD, Raben, Tan, in
preparation]) and combine our methods with work by others (for
example on the vector meson wavefunctions).
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Thank you!
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