
Introduction Holographic set-up The ρ meson mass

Holographic study of magnetically induced
ρ meson condensation

Nele Callebaut

Ghent University and Vrije Universiteit Brussel

September 27, 2013

Work in collaboration with David Dudal

Kavli IPMU workshop on Holographic QCD, Tokyo



Introduction Holographic set-up The ρ meson mass

Overview

1 Introduction

2 Holographic set-up
The Sakai-Sugimoto model
Introducing the magnetic field

3 The ρ meson mass
Taking into account constituents
Full DBI-action
Effect of Chern-Simons action and mixing with pions



Introduction Holographic set-up The ρ meson mass

Overview

1 Introduction

2 Holographic set-up
The Sakai-Sugimoto model
Introducing the magnetic field

3 The ρ meson mass
Taking into account constituents
Full DBI-action
Effect of Chern-Simons action and mixing with pions



Introduction Holographic set-up The ρ meson mass

Why study strong magnetic fields?



Introduction Holographic set-up The ρ meson mass

Why study strong magnetic fields?

experimental relevance: appearance in QGP (order B ∼ 15m2
π)



Introduction Holographic set-up The ρ meson mass

Why study strong magnetic fields?

experimental relevance: appearance in QGP (order B ∼ 15m2
π)

from a holographic viewpoint: interesting for comparison with lattice



Introduction Holographic set-up The ρ meson mass

Why study strong magnetic fields?

experimental relevance: appearance in QGP (order B ∼ 15m2
π)

from a holographic viewpoint: interesting for comparison with lattice

excellent probe for largely unknown QCD phase diagram
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ρ meson condensation: Landau levels

The energy levels ε of a free relativistic spin-s particle moving in a
background of the external magnetic field ~B = B~ez are the Landau
levels

Landau levels

ε2
n,sz

(pz ) = p2
z +m2 + (2n− 2sz + 1)|B |.

The combinations ρ = (ρ−x − iρ−y ) and ρ† = (ρ+x + iρ+y ) have spin

sz = 1 parallel to ~B.
In the lowest energy state (n = 0, pz = 0) their effective mass,

m2
ρ,eff (B) = m2

ρ − B,

can thus become zero if the magnetic field is strong enough.
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Abrikosov lattice ground state

Figure : Absolute value of the superconducting condensate ρ at
B = 1.01Bc in the transversal (x1, x2)- plane.
[Chernodub, Van Doorsselaere and Verschelde, 1111.4401]

Similar result in holographic toy model [Bu, Erdmenger, Shock &

Strydom, 1210.6669]
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ρ meson condensation: different approaches

phenomenological models: Bc = m2
ρ = 0.6 GeV2 (bosonic effective

model), Bc ≈ 1 GeV2 (NJL) [1008.1055,1101.0117]

lattice simulation: Bc ≈ 0.9 GeV2 [1104.3767]

 holographic approach:

can the ρ meson condensation be modeled?
can this approach deliver new insights? e.g. taking into account
constituents, effect on Bc

N.C., Dudal & Verschelde [1105.2217,1309.5042]; Ammon, Erdmenger,

Kerner & Strydom [1106.4551]
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Holographic QCD

Holographic QCD:

QCD
dual
= supergravitation in a higher-dimensional background

Anti de Sitter / Conformal Field Theory
(AdS/CFT)-correspondence (Maldacena 1997):

supergravitation in AdS5 space
dual
= conformal N=4 SYM theory

 Witten: supergravitation in D4-brane background
dual
=

non-conformal non-susy pure QCD-like theory
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The D4-brane background

ds2 =
( u

R

)3/2
(ηµνdxµdxν + f (u)dτ2) +

(
R

u

)3/2 ( du2

f (u)
+ u2dΩ2

4

)
,

eφ = gs

( u

R

)3/4
, F4 =

Nc

V4
ε4 , f (u) = 1− u3

K

u3
,
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The Sakai-Sugimoto model

To add flavour degrees of freedom to the theory, add Nf pairs of D8-D8 flavour
branes [Sakai and Sugimoto, hep-th/0412141].

Probe approximation Nf � Nc : backreaction of flavour branes on background is

ignored ∼ quenched approximation.
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The flavour D8-branes

On the stack of Nf coinciding pairs of D8-D8 flavour branes lives a
U(Nf )L ×U(Nf )R theory, to be interpreted as the chiral symmetry
in QCD.

The U-shaped embedding of the
flavour branes models
spontaneous chiral symmetry
breaking
U(Nf )L × U(Nf )R → U(Nf ).
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The flavour gauge field

The U(Nf ) gauge field Aµ(xµ, u) that lives on the flavour branes
describes a tower of vector mesons vµ,n(xµ) in the dual
QCD-like theory:

U(Nf ) gauge field

Aµ(x
µ, u) = ∑

n≥1

vµ,n(x
µ)ψn(u)
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Flavour gauge field and mesons

The way it works:

dynamics of the flavour D8/D8-branes: 5D YM theory
SDBI [Aµ] = · · · , Aµ(xµ, u) = ∑n≥1 vµ,n(xµ)ψn(u)

↓ integrate out the extra radial dimension u

effective 4D meson theory for vn
µ (x

µ)
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Approximations of the model

Duality is valid in the limit Nc → ∞ and large ’t Hooft coupling
λ = g2

YMNc � 1, and at low energies (where redundant massive
d.o.f. decouple).

Approximations (inherent to the model):

quenched approximation (Nf � Nc )

chiral limit (mπ = 0, bare quark masses zero)

Choices of parameters:

Nc = 3

Nf = 2 to model charged mesons
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How to turn on the magnetic field

A non-zero value of the flavour gauge field Am(xµ, z) on the
boundary,

Am(x
µ, u → ∞) = Aµ,

corresponds to an external gauge field in the boundary field theory
that couples to the quarks

ψiγµDµψ with Dµ = ∂µ + Aµ.

To apply an external electromagnetic field Aem
µ , put

Aµ(u → +∞) = −iQemAem
µ = Aµ

[Sakai and Sugimoto hep-th/0507073] Aem
2 = x1B

Qem =

(
2/3 0

0 −1/3

)
= 1

6 12 +
1
2 σ3
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Plan
• Action:

SDBI = −T8

∫
d4x 2

∫ ∞

u0

du
∫

ε4 e−φ STr
√
− det [gD8

mn + (2πα′)iFmn],

with

STr(F1 · · · Fn) =
1

n!
Tr(F1 · · · Fn + all permutations)

the symmetrized trace,

gD8
mn = gmn + gττ(Dmτ)2

the induced metric on the D8-branes (with covariant derivative
Dmτ = ∂mτ + [Am, τ]),
and

Fmn = ∂mAn − ∂nAm + [Am,An] = F a
mnt

a

the field strength
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SDBI = −T8

∫
d4x 2

∫ ∞

u0

du
∫

ε4 e−φ STr
√
− det [gD8

mn + (2πα′)iFmn],

• Gauge field ansatz:{
Am = Am + Ãm

τ = τ + τ̃

1 Determine embedding τ(u) as a function of Aµ (put

Ãm = τ̃ = 0)

2 Determine EOM for ρµ:
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Plan
• Action:

SDBI = −T8

∫
d4x 2

∫ ∞

u0

du
∫

ε4 e−φ STr
√
− det [gD8

mn + (2πα′)iFmn],

• Gauge field ansatz:{
Am = Am + Ãm

τ = τ + τ̃

1 Determine embedding τ(u) as a function of Aµ (put

Ãm = τ̃ = 0)

2 Determine EOM for ρµ:

Plug total gauge field ansatz into SDBI ,
expand to 2nd order in the fluctuations and integrate out u-dependence

Expand to order (2πα′)2 ∼ 1
λ2 (λ� 1) vs use full DBI-action
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General embedding u0 > uK

u0 > uK to model non-zero constituent quark mass which is
related to the distance between u0 and uK .
[Aharony et.al. hep-th/0604161]
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Numerical fixing of holographic parameters

There are three unknown free parameters (uK , u0 and κ(∼ λNc)).
In order to get results in physical units, we fix the free parameters
by matching to

the constituent quark mass mq = 0.310 GeV,

the pion decay constant fπ = 0.093 GeV and

the rho meson mass in absence of magnetic field mρ = 0.776 GeV.

Results:

uK = 1.39 GeV−1, u0 = 1.92 GeV−1 and κ = 0.00678
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B-dependent embedding for u0 > uK

Keep L fixed: u0(B) rises with B. This models magnetic
catalysis of chiral symmetry breaking
[Bergman 0802.3720; Johnson and Kundu 0803.0038].

Non-Abelian: u0,u(B) > u0,d (B)! U(2)→ U(1)u × U(1)d



Introduction Holographic set-up The ρ meson mass

B-dependent embedding for u0 > uK

Keep L fixed: u0(B) rises with B. This models magnetic
catalysis of chiral symmetry breaking
[Bergman 0802.3720; Johnson and Kundu 0803.0038].

Non-Abelian: u0,u(B) > u0,d (B)! U(2)→ U(1)u × U(1)d



Introduction Holographic set-up The ρ meson mass

B-dependent embedding for u0 > uK

Change in embedding models:

chiral magnetic catalysis ⇒ mu(B) and md (B)↗
~B explicitly breaks global U(2)→ U(1)u × U(1)d

Effect on ρ mass?

expect mρ(B)↗ as constituents get heavier

split between branes generates other mass mechanism: 5D gauge
field gains mass through holographic Higgs mechanism
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B-induced Higgs mechanism

The string associated with a charged ρ meson (ud , du) stretches
between the now separated up- and down brane ⇒ because a
string has tension it gets a mass.
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EOM for ρ for u0 > uK?

Non-trivial embedding

τ(u) =

(
τu(u)θ(u − u0,u) 0

0 τd (u)θ(u − u0,d )

)
6∼ 1,

describing the splitting of the branes, severely complicates the
analysis.

L5D = STr
{

..
(
[Ãm, τ] +Dmτ̃

)2
+ ..(Fµν)

2 + ..(Fµu)
2 + ..F µν[Ãµ, Ãν]

+..(∂uτ)F
(
[Ã, τ] +D τ̃

)
F
}

with all the .. different functions H(∂uτ,F ; u) of the background
fields ∂uτ, F .
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Fixing the gauge to disentangle Ã and τ̃

Faddeev-Popov gauge fixing:
The functional integral

Z =
∫
DADτ e i

∫
L[A,τ]

= C ′
∫
DADτ e i

∫
(L[A,τ]− 1

2G2) det

(
δG [Aα, τα]

δα

)
is restricted to physically inequivalent field configurations, by
imposing the gauge-fixing condition

G[fields] = 0.
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Fixing the gauge to disentangle Ã and τ̃

We choose the gauge condition on the fields

Ga[Ã, τ̃] =
1√
ξ
Hm(∂uτ,F ; u)DmÃa

m +
√

ξεabc τ̃bτc (a = 1, 2)

such that the gauge fixed Lagrangian

L[Ã, τ̃]− 1

2
G2

no longer contains Ãτ̃ mixing terms.
Then we choose ξ → ∞ (”unitary gauge”): τ̃1,2 decouple.

Remaining gauge freedom in Abelian direction fixed by

Aa
u = 0 (a = 0, 3).



Introduction Holographic set-up The ρ meson mass

Fixing the gauge to disentangle Ã and τ̃

In the chosen gauge the Higgs-mechanism is more visible:

τ̃1,2 are ’eaten’ = Goldstone bosons

Ã1,2
µ eating the τ̃1,2 = massive gauge bosons (mass ∼ τ2)

τ̃0,3 in the direction of the vev τ = Higgs bosons

We are left with
L5D = L[τ̃] + L[Ã]
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L[τ̃]: Stability of the embedding

L[τ̃]  stability of the embedding:
energy density

H =
δL

δ∂0τ̃
∂0τ̃ −L

associated with fluctuations τ̃0,3 must fulfill

E =
∫ ∞

u0,d

H > 0

We checked that this is the case.



Introduction Holographic set-up The ρ meson mass

L[Ã]: back to the ρ meson EOM

L5D = STr
{

..[Ãm, τ]2 + ..(Fµν)
2 + ..(Fµu)

2 + ..F µν[Ãµ, Ãν]
}

with all the .. different functions H(∂uτ,F ; u) of the background
fields ∂uτ, F .

STr-prescription [Myers, Hashimoto and Taylor, Denef et.al.]

STr
(
H(F )F 2

)
= −1

2

2

∑
a=1

F 2
a I (H) + ∑

a=0,3

· · ·

with

I (H) =

∫ 1
0 dαH(F 0 + αF 3) +

∫ 1
0 dαH(F 0 − αF 3)

2

L5D = −1

4
f1(B)(F

a
µν)

2 − 1

2
f2(B)(F

a
µu)

2 − 1

2
f3(B)F

3
ij ε3abÃ

a
i Ã

b
j

−1

2
f4(B)(Ã

a
µ)

2(τ3)2−1

2
f5(B)(Ã

a
i )

2(τ3)2
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EOM for ρ for u0 > uK
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 with Ãµ = ρµ(x)ψ(u)

demand
∫
du f1(B)ψ2 = 1 and

∫
du f2(B)(∂uψ)2+f4(B)(τ3)2ψ2 = m2

ρ(B),

then
∫
du f3(B)ψ2 = k(B) 6= 1 and

∫
du f5(B)(τ3)2ψ2 = m2
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∫
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µν = Dµρa
ν −Dνρa

µ)

modified 4D Lagrangian for a vector field in an external EM field
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Solve the eigenvalue problem

The normalization condition and mass condition on the ψ combine
to the eigenvalue equation

f −1
1 ∂u(f2∂uψ)− f −1

1 f4(τ3)
2ψ = −m2

ρψ

with b.c. ψ(x = ±π/2) = 0, ψ′(x = 0) = 0

which we solve with a numerical shooting method to obtain
m2

ρ(B).
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Landau vs Sakai-Sugimoto u0 > uK

Modified 4D Lagrangian for a vector field in an external EM field
with k(B) 6= 1
 modified Landau levels and

m2
ρ,eff (B) = m2

ρ(B)+m2
+(B)− k(B)B
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ρ meson condensation in Sakai-Sugimoto

Antipodal embedding (u0 = uK ) ⇒ Landau levels
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Full DBI-action
Reasons for considering full DBI-action:

Expansion parameter in action
det(g + iF ) = det g × det(1 + g−1iF ) is g−1iF
⇒ most strict condition

eB � 3
2

(
u0,d (B=0)

R

)3/2
(2πα′)−1 ≡ 0.45 GeV2

α′-corrections can cause magnetically induced tachyonic instabilities
of W -boson strings, stretching between separated D3-branes, to
disappear; the Landau level spectrum for the W -boson receives large
α′-corrections in general [Bolognesi 1210.4170; Ferrara hep-th/9306048].

S4D =
∫

d4x

{
−1

4
(Fa

µν)
2 − 1

2
m2

ρ(B)(ρ
a
µ)

2−1

2
b(B)(Fa

12)
2

−1

2
k(B)F

3
ij ε3abρa

i ρb
j −

1

2
m2

+(B)(ρ
a
i )

2−1

2
a(B)((Fa

i3)
2 + (Fa

i0)
2)

}
Further modified 4D Lagrangian for a vector field in an external EM field
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4-dimensional EOM

Standard Proca EOM for charged rho meson ρµ = (ρ1
µ + iρ2

µ)/
√

2

D2
µρν − 2iF

3
µνρµ −DνDµρµ −m2

ρρν = 0,

Dνρν = 0

with Dµ = ∂µ + iA
3
µ and Fµν = Dµρν −Dνρµ

replaced by

(1 + a)D2
µρν − i(1 + b+ k)F

3
µνρµ − (1 + a)DνDµρµ

− (m2
ρ +m2

+)ρν + (b− a)(D2
j ρν −DνDj ρj ) = 0,

Dνρν =
i

m2
ρ

(1 + b− k)F
3
µνDνρµ −

m2
+

m2
ρ

Di ρi
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Generalized Landau levels
Landau levels

ε2
n,sz

(pz ) = p2
z +m2

ρ + (2n− 2sz + 1)B

replaced by

ε2
n(pz ) = Bp2

z +
m2

ρ +m2
+

1 + a
+ (2n+ 1)B(B − M

2
) +

(1 + b− k)

2

B2

m2
ρ

± B

{
M
(
(2n+ 1)2

4
+K− 2B

)
+ (K− 2B)2

−(1 + b− k)(2n+ 1)ξ(K− 2B +
M
2
) +

(1 + b− k)2

4
ξ2
}1/2

with

B =
1 + b

1 + a
, K =

1 + b + k

1 + a
, M =

b− a

1 + a
− m2

+

m2
ρ

and ξ =
B

m2
ρ

ω2 = (2n+ 1)ξ(B − M
2
) +

(1 + b− k)

2
ξ2

± ξ

√
M
(
(2n+ 1)2

4
+K− 2B

)
+ (K− 2B)2 − (1 + b− k)(2n+ 1)ξ(K− 2B +

M
2
) +

(1 + b− k)2

4
ξ2.

(1)
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Effective ρ meson mass from full DBI-action

Condensing solution n = 0, pz = 0 for transverse charged ρ
mesons ρ = (ρ−x − iρ−y ) and ρ† = (ρ+x + iρ+y )

m2
ρ,eff (B) = m2

ρ − B

becomes

m2
ρ,eff (B) =

m2
ρ(B) +m2

+(B)

1 + a(B)
− k(B)

1 + a(B)
B
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ρ meson condensation in Sakai-Sugimoto

Antipodal embedding (u0 = uK ) ⇒ Landau levels
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Effect of Chern-Simons action and mixing
with pions

S = SDBI + SCS with

SCS ∼
∫

Tr
(

εmnpqrAmFnpFqr +O(Ã3)
)

ρπB mixing terms in the Chern-Simons action:

SCS ∼ B
∫ {

∂[0π0ρ0
3] +

1

2

(
∂[0π+ρ−

3]
+ ∂[0π−ρ+

3]

)}
+ · · · ,

but only between pions and longitudinal ρ meson components

so no influence of pions on condensation of transversal ρ meson
components (in order Ã2 analysis)
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Conclusion: back to objectives

Studied effect: ρ meson condensation

phenomenological models: Bc = m2
ρ = 0.6 GeV2

lattice simulation: slightly higher value of Bc ≈ 0.9 GeV2

 holographic approach:

can the ρ meson condensation be modeled? yes
can this approach deliver new insights? e.g. taking into account
constituents, effect on Bc

Up and down quark constituents of the ρ meson can be modeled as
separate branes, each responding to the magnetic field by changing
their embedding. This is a modeling of the chiral magnetic catalysis
effect. We take this into account and find also a string effect on the
mass, leading to a Bc ≈ 0.8 GeV2. Effect of full DBI is further
increase of Bc .
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Thank you for your attention!

Questions?
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