Spatial Modulation and Topological Current in Holographic QCD Matter

silgan silgan silgan silgan silgan silga silgan silgan silgan silgan silgan silgan silgan silgan silga

## Kenji Fukushima

Department of Physics, Keio University (Department of Physics, The University of Tokyo)

In collaboration with Pablo Morales Phys.Rev.Lett.111 (2013) 051601 (1305.4115 [hep-ph])

# Outline

*p*-wave pion condensation in nuclear matter An old but vital idea of inhomogeneity in nuclear physics, but...

#### Landau-Migdal interaction in a Fermi liquid

Almost abandoned... and revived recently in quark matter

# Interaction controlled by topological current in *B* – *Chiral Magnetic Effect* –

Effect of the topological current induced by the magnetic field

#### Analysis in the Sakai-Sugimoto model

Inhomogeneous states favored or disfavored by *B*??? Results consistent with what happened to the pion condensation Sep. 27, 2013 @ IPMU 2

# Historical Phase Diagram of QCD

#### **Baym (1983)**

PHASE DIAGRAM OF NUCLEAR MATTER



# Historical Phase Diagram of QCD Baym (1983) PHASE DIAGRAM OF NUCLEAR MATTER



### p-wave Pion Condensation

Sawyer-Scalapino, Migdal (1972)

$$\Pi(\omega,k) \rightarrow D^{-1}(\omega=0,k=k_c)=0 \text{ at } \rho=\rho_c$$







One Pion Exchange Potential (OPEP)

$$V = \frac{m_{\pi}^{2}}{3} \frac{g^{2}}{4\pi} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \left[ \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \frac{e^{-m_{\pi}r}}{r} + S_{12} \left( 1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^{2}} \right) \frac{e^{-m_{\pi}r}}{r} \right] - \frac{g^{2}}{3} (\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) (\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \delta(r)$$

**Landau-Migdal (short-ranged) Interactions**  $f + g \sigma_1 \cdot \sigma_2 + f' \tau_1 \cdot \tau_2 + g' (\sigma_1 \cdot \sigma_2) (\tau_1 \cdot \tau_2)$ 

# p-wave Pion Condensation

#### Why *p*-wave?

Relative angular-momentum must be 1 (p-wave) $- \pi$  (negative parity)N $\langle \sigma \rangle \sim \chi \cos(2qz)$  $\langle \pi^0 \rangle \sim \chi \sin(2qz)$ 

#### Landau-Migdal Parameter

g' is sensitive to the spin-isospin collective exciation Gamow-Teller resonance  $\rightarrow$  large g'  $\rightarrow$  No pion condensation?

Most of nuclear physicists consider no pion condensation up to a few times normal nuclear density

# p-wave Pion Condensation

#### Why *p*-wave?

**Relative angular-momentum must be 1 (p-wave)**  $- - \pi$  (negative parity)

$$N \qquad \langle \sigma \rangle \sim \chi \cos(2 q z) \qquad \langle \pi^0 \rangle \sim \chi \sin(2 q z)$$

#### Landau-Migdal Parameter

g' is sensitive to the spin-isospin collective exciation Gamow-Teller resonance  $\rightarrow$  large g'  $\rightarrow$  No pion condensation?

Most of nuclear physicists consider no pion condensation up to a few times normal nuclear density

#### **History repeats itself (Nuclear → Quark Matter)**

# One Possible QCD Phase Diagram Fukushima-Sasaki (2013)



#### **Inhomogeneous Chiral Condensate**

**Energy Gain by Spiral**  
**Chiral spiral (DGR Ansatz)** Deryagin-Grigoriev-Rubakov (1992)  

$$\psi(x) = e^{i\gamma_5\tau_3qz}\psi'(x)$$
 with  $\chi = \langle \bar{\psi}'\psi' \rangle$   
 $\langle \sigma \rangle \sim \langle \bar{\psi}\psi \rangle = \chi \cos(2qz)$   
 $\langle \pi^0 \rangle \sim \langle \bar{\psi}\gamma_5\tau_3\psi \rangle = \chi \sin(2qz)$ 

**Quasi-particle dispersion relation** 

$$\omega = \sqrt{p_{\perp}^2 + \left(\sqrt{p_z^2 + M^2} \pm q\right)^2}$$

Vacuum favors large M

**High Density Competitive** favors small M

Vacuum + High Density favors large  $q \sim M$  most!

**Energy Gain by Spiral**  
**Chiral spiral (DGR Ansatz)** Deryagin-Grigoriev-Rubakov (1992)  

$$\psi(x) = e^{i \gamma_5 \tau_3 q z} \psi'(x)$$
 with  $\chi = \langle \bar{\psi}' \psi' \rangle$   
 $\langle \sigma \rangle \sim \langle \bar{\psi} \psi \rangle = \chi \cos(2 q z)$   
 $\langle \pi^0 \rangle \sim \langle \bar{\psi} \gamma_5 \tau_3 \psi \rangle = \chi \sin(2 q z)$ 

**Quasi-particle dispersion relation** 

$$\omega = \sqrt{p_{\perp}^2 + \left(\sqrt{p_z^2 + M^2} \pm q\right)^2}$$

Vacuum favors large M

Competitive

**High Density** favors small *M* 

Counterpart of the Landau-Migdal int? Can be the true ground state with strong *B* 

# Landau Quantization

Energy dispersion relation in *B* 

$$\omega^{2} = p_{z}^{2} + 2|gB|(n+1/2) + m^{2} - 2sgB$$

Transverse motion = Harmonic Oscillator

- Light fermions (*s*=1/2) have zero mode. Pseudo-(1+1) dimensional system of fermions
- Light vector bosons have (Nielesen-Olesen) instability. Gluons in the chromo- $B / \rho$  in a superstrong B (Chernodub)
- Charged scalar bosons are all massive.

 $\pi^+$ ,  $\pi^-$ , ... Explicit breaking of isospin symmetry **Etc, etc...** 

Pseudo-(1+1) dimensional System  
Dirac Lagrangian in (1+1) dimensions  

$$L = \overline{\psi} [(\partial_4 + \mu) \gamma^4 + \partial_3 \gamma^3] \psi \qquad \psi = e^{-\mu \gamma^3 \gamma^4 x_3} \psi'$$

$$= \overline{\psi} \cdot [\partial^4 \gamma_4 + \partial_3 \gamma^3] \psi' \qquad \overline{\psi} = \overline{\psi} \cdot e^{-\mu \gamma^3 \gamma^4 x_3}$$
Thermodynamic potential  

$$\Omega/V = -\int_{-\infty}^{\Lambda-\mu} \frac{dp}{2} \frac{|\varepsilon(p)|}{2} - \int_{-\infty}^{\Lambda+\mu} \frac{dp}{2} \frac{|\varepsilon(p)|}{2} + \cdots$$

$$= \frac{1}{2\pi} \frac{\frac{\mu}{2\pi}}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} - \int_{-\Lambda-\mu} \frac{\frac{\mu}{2\pi}}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} + \cdots$$
$$= \frac{\Omega(\mu=0)}{V} - \frac{\mu^2}{2\pi} \frac{1}{2\pi} - \int_{-\Lambda-\mu} \frac{\frac{\mu}{2\pi}}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} + \cdots$$
Surface integral: Anomaly origin c.f. CS term in Sakai-Sugimoto

No mass suppression as compared to the homogeneous case Energy gain by spiral maximized in (1+1) dimensions!

*Pseudo-(1+1) dimensional System* ng selang se If the zero-density system has a condensate:  $\langle \bar{\psi} \psi \rangle = (\text{homogeneous chiral condensate})$ **Rotated system has the same condensate:**  $\langle \bar{\Psi}' \Psi' \rangle$ (1+1)-dimensional system forms a "spiral"  $\langle \bar{\psi}\psi\rangle = \langle \bar{\psi}'\psi'\rangle \cos(2\mu z)$  $\langle \bar{\psi} \chi^3 \chi^4 \psi \rangle = \langle \bar{\psi}' \psi' \rangle \sin(2\mu z)$ 

**Chiral Magnetic Spiral** Basar-Dunne-Kharzeev (2010)

*Pseudo-(1+1) dimensional System* If the zero-density system has a condensate:  $\langle \bar{\psi} \psi \rangle = (\text{homogeneous chiral condensate})$ **Rotated system has the same condensate:**  $\langle \bar{\Psi}' \Psi' \rangle$ (1+1)-dimensional system forms a "spiral"  $\langle \bar{\psi}\psi\rangle = \langle \bar{\psi}'\psi'\rangle \cos(2\mu z)$  $\langle \bar{\psi} \chi^3 \chi^4 \psi \rangle = \langle \bar{\psi}' \psi' \rangle \sin(2\mu z)$ **Chiral Magnetic Spiral Basar-Dunne-Kharzeev (2010)** 

 $B + \mu$  causes another interesting phenomenon!



## Quantum Formula

Chiral Magnetic (Separation) Effect

$$\boldsymbol{j}_{5} = \frac{e^{2} \mu}{2 \pi^{2}} \boldsymbol{B} \qquad \left( \boldsymbol{j}^{\mu} = \boldsymbol{\epsilon}^{\mu \nu \rho \sigma} \partial_{\nu} \boldsymbol{\varphi} \boldsymbol{F}_{\rho \sigma} \right)$$

**Vector = Axial-Vector**  $(\gamma^5 = \gamma^0 \gamma^1)$  in (1+1)

$$\gamma^{\mu}\gamma^{5} = -\epsilon^{\mu\nu}\gamma_{\nu} + j_{\nu}^{\mu} = \overline{\psi}\gamma^{\mu}\psi, \qquad j_{A}^{\mu} = \overline{\psi}\gamma^{\mu}\gamma^{5}\psi$$
$$\longrightarrow \qquad j_{V}^{1} = j_{A}^{0}, \qquad j_{A}^{1} = j_{V}^{0}$$

## Question

At high density Chiral spiral is expected?

#### At strong **B**

Chiral spiral is favored by low dimensionality...

Competitive

Axial-current is strengthened leading to  $g'(\sigma_1 \cdot \sigma_2)(\tau_1 \cdot \tau_2)$ that disfavors the chiral spiral...

## What we need is...

#### **Spatial Inhomogeneity**

**Ooguri-Park, Chuang-Dai-Kawamoto-Lin-Yeh (2010)** 

### **Topological Current**

Yee, Rebhan-Schmitt-Stricker (2009)

Non-perturbative Method  $\rightarrow$  Sakai-Sugimoto Model Holographic QCD Model with D4+D8+ $\overline{D8}$  Sakai-Sugimoto (2004)

## Phase Diagram in SSM

Bergman-Lifschytz-Lippert (2007)



# Inhomogeneous States in SSM

Chuang-Dai-Kawamoto-Lin-Yeh (2010)



# Inhomogeneous States in SSM

#### Chuang-Dai-Kawamoto-Lin-Yeh (2010)



# Sketch of the Calculations Action for the flavor sector $O(1^4 - 1^4)$ DBI action

$$S = N \int d^4 x \, du \, u^{1/4} \sqrt{-\det\left(g_{\alpha\beta} + F_{\alpha\beta}\right)} \\ + \frac{\alpha}{3!} N \int d^4 x \, du \, \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4 \mu_5} A_{\mu_1} F_{\mu_2 \mu_3} F_{\mu_4 \mu_5}$$
  
Chern-Simons action

**Density**  $\overline{a}_0(u)$   $\overline{a}_0(\infty) = \mu$ 

**Current**  $\overline{a}_z(u)$ 

**Magnetic field**  $\overline{F}_{xy} = B(u) = B$ 

 $S \sim \int du \, u^{5/2} \sqrt{(1 - a_0'^2 + f a_z'^2)(1 + B^2 u^{-3})} + 4 \alpha B \int du \, \overline{a}_z \, \overline{a}_0'$ 

# Sketch of the Calculations Equations of motion (w.r.t. $a_0$ and $a_z$ )

$$\rho = u \bar{a}_0' \sqrt{\frac{u^3 + B^2}{1 - \bar{a}_0'^2 + f \bar{a}_z'^2}} - 4 \alpha B \bar{a}_z \qquad 0 = u f \bar{a}_z' \sqrt{\frac{u^3 + B^2}{1 - \bar{a}_0'^2 + f \bar{a}_3'^2}} - 4 \alpha B \bar{a}_0$$

#### **Asymptotic solutions:**

$$\overline{a}_{z}(u \rightarrow \infty) \simeq -\frac{8\alpha}{3} B \mu u^{-3/2} \qquad \overline{a}_{0}(u \rightarrow \infty) \simeq \mu -\frac{3\alpha}{2} \rho u^{-3/2}$$
$$\sim j_{5}$$

#### **Introducing spatial modulations:**



## Phase Diagram with B



## Summary and...

E. ARANG, ARANG, ARANG, ARANG, ARANG, ARANG, ARANG, ARANG, ARA

Sakai-Sugimoto model is a powerful tool to investigate the *chiral sector of large-N<sub>c</sub> QCD*.

 $\rightarrow$  Phase Diagram ??

Axial-vector interaction disfavors the spatial modulations in the same way as discussed by nuclear physicists long long time ago.

Full structure of the phase diagram with an extra axis of strong *B* ??

Earlier chiral phase transition? (Magnetic Inhibition) (Fukushima-Hidaka 2012)