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Introduction

What is hydrodynamics?

» Universal description of the long wavelength degrees of freedom
> Applies equally well at macroscopic and microscopic scales

» Current most relevant example: quark-gluon-plasma produced at
RHIC/LHC

Long wavelength description = gradient expansion = expansion in the
number of derivatives

Question: What is the nature of such an expansion?
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Introduction
Hydrodynamics:

1. Concentrates on the dynamics of the energy-momentum tensor T,

2. Amounts to the assumption that T, is wholly expressed through
the flow velocity u*, energy density and pressure (E = 3p for
conformal fluids)

3. Arrange all possible terms by the number of derivatives of u*

4. Coefficients of these terms = transport coefficients characteristic of
the underlying microscopic theory

5. Generalized Navier-Stokes equation is just 9, T =0
N = 4 SYM hydrodynamics:
T o= (T (" + duru”) = 2(x T)3 0" +

rescaled

perfect fluid viscosity

14 v 1 v v 14
+ (7 T?) <Iog2T2‘; +2Th) + (2 —log2) <3T2“C + Ty + The >)

second order hydrodynamics

Bhattacharya, Hubeny, Minwalla, Rangamani
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Question 1

What is the nature of the gradient expansion?

» Suppose we include terms with more and more derivatives
(dissipation)

> Is the resulting series asymptotic (zero radius of convergence)?

» What physics is (quantitatively) responsible for the lack of
convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

» What are the singularities on the Borel plane and what is their
physical interpretation?

» Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
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Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk| we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

» What are the deviations from all-order hydrodynamics? (possible
phenomenological models?)
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Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation
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» What are the deviations from all-order hydrodynamics? (possible
phenomenological models?)
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Final motivation:

N =4 SYM provides for us (through the AdS/CFT
correspondence) the only physical system for which one can

systematically compute high orders of the gradient expansion and
examine the above questions
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» One starts with a boosted planar black hole representing a plasma
system moving with uniform velocity u* and with temperature T

» One promotes u* and T to slowly varying functions — one has to
correct the metric iteratively in an expansion in gradients

» At each order one looks for a (regular) solution of

(Linear differential operator)[ng’;)] = RHS[{g;(i’B}OS'SH—l]

» Rather complicated to perform the expansion analytically:
e in general carried out to 2" order (2" order viscous
hydrodynamics)

e in boost-invariant case up to 3™ order
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Method: Fluid/gravity duality

» At each order we have a set of coupled linear ODE’s

» Very simple to solve numerically (with very high precision!)

Much simpler than normal numerical relativity which involves solving
nonlinear PDE's!!

Simplicity /our practical motivation —> consider the
boost-invariant setting
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Boost-invariant flow

Bjorken '83

Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

» In a conformal theory, le‘ =0 and 0, T"” = 0 determine, under the
above assumptions, the energy-momentum tensor completely in
terms of a single function (7), the energy density at mid-rapidity.

> The assumptions of symmetry fix uniquely the flow velocity
» Gradient expansion coincides with an expansion in
1

T

Wi

» A new combination of transport coefficients appears at each order in
the above expansion
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RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller
> Leading term — perfect fluid behaviour
second term — 15 order viscous hydrodynamics

third term — 279 order viscous hydrodynamics
fourth term — 37 order viscous hydrodynamics...

e(r) =

» In general:

()= %

n:27-3

» At each order new transport coefficients start to contribute to ¢,...
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242 equations
e(r) = Z = e to get to so high orders we need very high
=212 precision computations

e first couple of orders — easy and fast
» Introduce u = 1/7%/3
242

e(u) = Z equ”
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Convergence
(g

14

Zero radius of convergence
Asymptotic series...
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Borel transform

» Define the Borel transform

> If there are no singularities on the real axis, a Borel resummation of
the asymptotic series can be obtained from the integral

oo
Eresum(U) = / e %&(su) ds where y = 773
0

» £(u) has only a finite radius of convergence. In order to locate
singularities in the Borel plane, we perform a symmetric Pade
approximation...

» Look at poles = zeroes of the denominator of the Pade
approximant...
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AR L : 0
= S 0 T 5o Redo > The pole at the edge of the
~..... cut (¢ = 4.12065 + 4.67895 /)
-10 Lo will contribute as
20 ° 2
. o—(4.12065+4.67895 /) 73

» This is exactly the first lowest non-hydrodynamic quasi-normal

mode!
> It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski

3
—i(3.1195 — 2.7467 i)/ﬂ'T(T) dr = —i=(3.1195 — 2.7467 /) 5
—— 2

1
1/73 —4.12005—4.67925 |

planar BH QNM
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What is the interpretation of the whole branch cut?

Im » Deform the contour of the
. inverse Borel transform to
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L encircle the cut and extract
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10 % e e . the large 7 behaviour
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R » We obtain a preexponential
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... power law factor
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© 2
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. . —1.542640.5192 ,—i 3(3.1193-2.7471 /)73
L]
» The late time geometry is an evolving black hole deformed by

>

>

viscous corrections (first gradient terms in the fluid/gravity duality)
This modification of the geometry generates a nontrivial power-law
modification of the quasi-normal mode which is

154224051007 | ,—i 3(3.1195-2.7467 iyr3
High order viscous hydrodynamic expansion encodes the fine details
of the first non-hydrodynamic degrees of freedom
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» Recall the hydrodynamic expression for the temperature T(7):
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+...

interpretation
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T3 673

> Then using the substitution 7Tt — [ 7T(7)dT we get

1
/WT(T)dT ~ 27% — —logT+...

follows from the simple formula
—2e—/wQNMf 7 T(T)dT

» So the QNM including viscous corrections which we derived earlier
T
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» The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

» All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 /32



Borel resummation

20/ 32



Borel resummation

> We need to evaluate the integral

& resum(T) = /OOO e Sz (g/T%) d¢

20/ 32



Borel resummation

> We need to evaluate the integral
> - 2
€ resum(T) :/ e ¢ (C/T3) d¢
0

» For this we need to have an analytical continuation of the Borel
transform &(..) on the whole positive real axis

20/ 32



Borel resummation
> We need to evaluate the integral
o0
—(~ 2
6,esum(7'):/ e 5((/7’3) d¢
0

» For this we need to have an analytical continuation of the Borel
transform &(..) on the whole positive real axis — use Pade
approximant

20/ 32



Borel resummation

> We need to evaluate the integral
o0
—(~ 2
Eresum(T) = / e & (C/T3) d¢
Jo
» For this we need to have an analytical continuation of the Borel

transform &(..) on the whole positive real axis — use Pade
approximant

» What type of Pade??

20/ 32



Borel resummation

v

We need to evaluate the integral
> - 2
Eresum(T) = / e ¢ (C/T3) d¢
Jo

» For this we need to have an analytical continuation of the Borel
transform &(..) on the whole positive real axis — use Pade
approximant

» What type of Pade??

» Naively (n, n) would be natural as it would lead to £(7) — const as
7T—0

20/ 32



Borel resummation

v

We need to evaluate the integral
o 2
 resum(T) = / ez (¢/rt) dc
Jo
For this we need to have an analytical continuation of the Borel

transform &(..) on the whole positive real axis — use Pade
approximant

» What type of Pade??

Naively (n, n) would be natural as it would lead to £(7) — const as
T—0

However the hydrodynamic series suggests different asymptotics:

W) (n,n) Pade —» lim 20 _ 3 00000022...
E(U) u—00 g(u)

20/ 32



Borel resummation

v

We need to evaluate the integral
o 2
 resum(T) = / ez (¢/rt) dc
Jo
For this we need to have an analytical continuation of the Borel

transform &(..) on the whole positive real axis — use Pade
approximant

» What type of Pade??

Naively (n, n) would be natural as it would lead to £(7) — const as
T—0

However the hydrodynamic series suggests different asymptotics:

u@,,s(u) — (n,n) Pade — lim uaue(u)

= 3.00000022...
£(u) umoo - E(u)

Use (n,n — 3) Pade...
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Borel resummation

We constructed the Borel resummed T(7) for 7 > 0.2 (units set by
T(1) ~ %7”% as T — 00)

Question: How does the Borel resummed all-order hydro compare with
true numerical evolution?

21 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

2 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

22 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

1

Describe it in terms of lightest degrees of freedom on the AdS side
which are relevant at strong coupling

22 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

1

Describe it in terms of lightest degrees of freedom on the AdS side
which are relevant at strong coupling

i
s Gu (T, z)dxtdx” + dz?
ds® = =£ =

= ggg dx“dx”

22 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

1

Describe it in terms of lightest degrees of freedom on the AdS side
which are relevant at strong coupling

1
, dxHdx? d 2
ds? = 8uv(7:2) );2 x_taz Egggdxadx’g
1
Compute the time-evolution by solving (numerically) 5D Einstein’s
equations

1
Rap — 58o3R — 6825 =0

22 /32



Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

1

Describe it in terms of lightest degrees of freedom on the AdS side
which are relevant at strong coupling

1
, dxHdx? d 2
ds? = 8uv(7:2) );2 x_taz Egggdxadxﬁ
1
Compute the time-evolution by solving (numerically) 5D Einstein’s
equations

1
Rap — 58o3R — 6825 =0

1

Extract physical observables from the numerical geometry
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What physics can we extract?

> Asymptotics of g,,.(x”, z) at
z ~ 0 gives the
energy-momentum tensor
T, (x?) of the plasma system

> We can test whether T, (x”)
is of a hydrodynamic form...

» We can check for local
thermal equilibrium

» The area of the apparent
horizon defines for us the
entropy density

» We observe some initial
entropy

» It is convenient to organize

0.10 0.15 020 0. . . .
w2 initial data according to their

i

initial entropy
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Review of main results

1.

2.
3.

As a measure of energy density introduce the effective temperature
(= temperature of a thermal system with the same energy density)
Form the dimensionless product w = T - 7

For all initial conditions considered, viscous hydrodynamics works

very well for w = Ter -7 > 0.7
e
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Review of main results

1.

2.
3.

As a measure of energy density introduce the effective temperature
(= temperature of a thermal system with the same energy density)
Form the dimensionless product w = T - 7

For all initial conditions considered, viscous hydrodynamics works

very well for w = Ter -7 > 0.7
e

075
060} et -
04sf
030

0.15

L

s
0 01 02 03 04 05"

(natural values for RHIC: (19 = 0.25 fm, Ty = 500 MeV') assumed in
[Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63)

. The plasma system is described by viscous hydrodynamics even

though it is not in true thermal equilibrium — there is still a
sizable pressure anisotropy

ApLzlf&NOJ

e/3
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Remarks:

> As mentioned earlier, we get rid of the dependence on the number of
degrees of freedom by parametrizing the energy density through an
effective temperature given by

3
e(r) = §N§7T2 T:ff(T)

> Previously, we normalized our initial data by setting
Teff(T = 0) =1

but this is generically unknown in realistic heavy-ion collisions...

> It is much better to fix the normalization through the hydrodynamic
tail...

1 . .
TTewr(T) ~ — in the 7 — oo limit
T3

The coefficient ‘1’ fixes the units of 7.

return to the Borel resummation...
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0 1 2 3 4

green line: 3™ order hydrodynamics

red line: Borel resummed hydrodynamics

e The point 79 = 0.25 fm, To = 500 MeV (w = T7 = 0.63) corresponds
here to 7 ~ 3.14 (our thermalization criterion was very strict)
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How to model deviations from
(all-order) hydrodynamics?

> Is there a simple phenomenological model simpler than 5D Einstein's
equations??

T (T, u”) ~ hydrodynamics
Tu(T,u”,..) ~ hydrodynamics + additional DOF

c.f. anisotropic hydrodynamics of Florkowski, Strickland and
collaborators

» Can we get information on the possible (number of) degrees of
freedom from our knowledge of a) resummed hydrodynamics b) a
large set of diverse numerical profiles
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» Each quasinormal mode represents an independent degree of
freedom from the 4D perspective...

» Recall the generic structure of QNM modes for a boost-invariant
flow (including first viscous corrections)

(SE(T) ~ T—26—inNMf 7 T(7)dT

> One can estimate that s = [ 7 T(7)d7 at the transition to
hydrodynamics would set the scale for how many QNM would be
relevant there...

» It turns out that s = 1.6...3 and Im wonm = 2.75,4.76,6.77, ...
A few additional DOF might suffice?

v
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Quasinormal modes — still very preliminary!

Tere(7) from numerical simulations with fitted 1 QNM subtracted

0.5

0.4

03

0.2!

0.1

—

e —

31/32



Quasinormal modes — still very preliminary!

Terr () from numerical simulations with fitted 15t 4-2"¢ QNM subtracted
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Terr(7) from numerical simulations with fitted 15t + 274 4 3¢ QNM
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Quasinormal modes — still very preliminary!

Terr(7) from numerical simulations with fitted 15t + 274 4 3¢ QNM
subtracted
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Many questions: nonlinearities, fitting intervals, 4D formulation??
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Conclusions

v

We calculated the gradient expansion to very high orders
The hydrodynamic expansion has zero radius of convergence

The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

Analogy with perturbative expansion in QFT and instanton effects

Hydrodynamic expansion captures quantitatively fine details of these
leading nonhydrodynamic modes

We do not find poles on the positive real axis suggesting the
existence of a Borel resummation, which can be constructed using
Pade approximants

Higher order hydrodynamics seems relevant for ‘small” initial data...
4D perspective on deviations from hydro???
QNM frequencies for QCD??7? (lattice?)
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