
Hydrodynamics and beyond...

Romuald A. Janik

Jagiellonian University
Kraków

M. Heller, RJ, P. Witaszczyk, 1302.0697 [PRL 110, 211602 (2013)]
work in progress and results from 1103.3452, 1203.0755

1 / 32



Outline

What is hydrodynamics? (and higher-order hydrodynamics?)

Some questions

Methods: fluid/gravity duality and boost-invariant flow

The Borel plane and gradient expansion

Borel resummed hydrodynamics

Comparisions with numerics

Conclusions

2 / 32



Introduction

What is hydrodynamics?

I Universal description of the long wavelength degrees of freedom
I Applies equally well at macroscopic and microscopic scales
I Current most relevant example: quark-gluon-plasma produced at

RHIC/LHC

Long wavelength description ≡ gradient expansion ≡ expansion in the
number of derivatives

Question: What is the nature of such an expansion?
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Introduction
Hydrodynamics:

1. Concentrates on the dynamics of the energy-momentum tensor Tµν
2. Amounts to the assumption that Tµν is wholly expressed through

the flow velocity uµ, energy density and pressure (E = 3p for
conformal fluids)

3. Arrange all possible terms by the number of derivatives of uµ

4. Coefficients of these terms ≡ transport coefficients characteristic of
the underlying microscopic theory

5. Generalized Navier-Stokes equation is just ∂µTµν = 0

N = 4 SYM hydrodynamics:

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

Bhattacharya, Hubeny, Minwalla, Rangamani
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Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

I Can we explicitly construct Borel resummed hydrodynamics?

These questions are very interesting but also quite theoretical...
5 / 32



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

I What are the deviations from all-order hydrodynamics? (possible
phenomenological models?)
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Final motivation:

N = 4 SYM provides for us (through the AdS/CFT
correspondence) the only physical system for which one can
systematically compute high orders of the gradient expansion and
examine the above questions
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Method: Fluid/gravity duality

I Approach pioneered by Bhattacharya, Hubeny, Minwalla, Rangamani
I One starts with a boosted planar black hole representing a plasma

system moving with uniform velocity uµ and with temperature T
I One promotes uµ and T to slowly varying functions – one has to

correct the metric iteratively in an expansion in gradients
I At each order one looks for a (regular) solution of

(Linear differential operator)[g (n)
µν ] = RHS [{g (j)

µν}0≤j≤n−1]

I Rather complicated to perform the expansion analytically:
• in general carried out to 2nd order (2nd order viscous
hydrodynamics)
• in boost-invariant case up to 3rd order
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Method: Fluid/gravity duality

I At each order we have a set of coupled linear ODE’s
I Very simple to solve numerically (with very high precision!)

Much simpler than normal numerical relativity which involves solving
nonlinear PDE’s!!

Simplicity/our practical motivation −→ consider the
boost-invariant setting
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµ
µ = 0 and ∂µTµν = 0 determine, under the

above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The assumptions of symmetry fix uniquely the flow velocity
I Gradient expansion coincides with an expansion in

1

τ
2
3

I A new combination of transport coefficients appears at each order in
the above expansion
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Large τ behaviour of ε(τ)

I Structure of the analytical result for large τ :

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

I In general:

ε(τ) =
∞∑

n=2

εn

τ
2n
3

I At each order new transport coefficients start to contribute to εn...
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Large τ behaviour of ε(τ)

I By iteratively solving numerically the linear ODE’s from fluid/gravity
duality, we obtained 240 coefficients in the gradient expansion

ε(τ) =
242∑
n=2

εn

τ
2n
3

• chief complication – generate the r.h.s. of the
equations
• to get to so high orders we need very high
precision computations
• first couple of orders – easy and fast

I Introduce u ≡ 1/τ 2/3

ε(u) =
242∑
n=2

εnun

Convergence

Zero radius of convergence
Asymptotic series...
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Borel transform

I Define the Borel transform

ε̃(u) =
242∑
n=2

εn

n!
un

I If there are no singularities on the real axis, a Borel resummation of
the asymptotic series can be obtained from the integral

εresum(u) =

∫ ∞
0

e−s ε̃(su) ds where u = τ−
2
3

I ε̃(u) has only a finite radius of convergence. In order to locate
singularities in the Borel plane, we perform a symmetric Pade
approximation...

I Look at poles ≡ zeroes of the denominator of the Pade
approximant...
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Singularities in the Borel plane

I The poles on the negative real
axis are spurious

I The zeroes of the
denominator of the Pade
approximant coincide with the
zeroes of the numerator up to
10−100 accuracy
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Singularities in the Borel plane

I Branch cuts on the Borel
plane

I Branch points set the radius
of convergence of the Borel
transform

I Apparently no poles on the
real axis!
Borel resummation should be
possible...

Question:

What is the physical interpretation of the branch cut
singularities?
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Singularities in the Borel plane

I Deform the contour of the
inverse Borel transform

εresum(τ) =

∫ ∞
0

e−ζ ε̃
(
ζ/τ

2
3

)
dζ

I The pole at the edge of the
cut (ζ0 = 4.12065 + 4.67895 i)
will contribute as

e−(4.12065+4.67895 i) τ
2
3

I This is exactly the first lowest non-hydrodynamic quasi-normal
mode!

I It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski

−i (3.1195− 2.7467 i)︸ ︷︷ ︸
planar BH QNM

∫
πT (τ)︸ ︷︷ ︸
1/τ

1
3

dτ = −i
3
2

(3.1195− 2.7467 i)︸ ︷︷ ︸
−4.12005−4.67925 i

τ
2
3
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−i (3.1195− 2.7467 i)︸ ︷︷ ︸
planar BH QNM

∫
πT (τ)︸ ︷︷ ︸
1/τ

1
3

dτ = −i
3
2

(3.1195− 2.7467 i)︸ ︷︷ ︸
−4.12005−4.67925 i

τ
2
3
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Singularities in the Borel plane
What is the interpretation of the whole branch cut?

I Deform the contour of the
inverse Borel transform to
encircle the cut and extract
the large τ behaviour

I We obtain a preexponential
power law factor

τ−1.5426+0.5192 i ·e−i 32 (3.1193−2.7471 i)τ
2
3

I The late time geometry is an evolving black hole deformed by
viscous corrections (first gradient terms in the fluid/gravity duality)

I This modification of the geometry generates a nontrivial power-law
modification of the quasi-normal mode which is

τ−1.5422+0.5199 i · e−i 32 (3.1195−2.7467 i)τ
2
3

I High order viscous hydrodynamic expansion encodes the fine details
of the first non-hydrodynamic degrees of freedom
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Singularities in the Borel plane

I In fact the quasinormal mode preexponential factor has a clear
interpretation

I Recall the hydrodynamic expression for the temperature T (τ):

πT (τ) =
1

τ
1
3

(
1− 1

6τ
2
3

+ . . .

)
I Then using the substitution πTt −→

∫
πT (τ)dτ we get∫

πT (τ)dτ ∼ 3
2
τ
2
3 − 1

6
log τ + . . .

I So the QNM including viscous corrections which we derived earlier
follows from the simple formula

τ−2e−iωQNM
∫
πT (τ)dτ

as

−2− i(3.1195− 2.7467i)︸ ︷︷ ︸
ωQNM

·
(
−1

6

)
= −1.54222 + 0.519917i
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Singularities in the Borel plane

I The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 / 32



Singularities in the Borel plane

I The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 / 32



Singularities in the Borel plane

I The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 / 32



Singularities in the Borel plane

I The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 / 32



Singularities in the Borel plane

I The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I All-order hydrodynamics knows about its UV completion!

No singularities on the positive real axis!

Borel resummation possible...

19 / 32



Borel resummation

I We need to evaluate the integral

εresum(τ) =

∫ ∞
0

e−ζ ε̃
(
ζ/τ

2
3

)
dζ

I For this we need to have an analytical continuation of the Borel
transform ε̃(..) on the whole positive real axis −→ use Pade
approximant

I What type of Pade??
I Naively (n, n) would be natural as it would lead to ε(τ)→ const as
τ → 0

I However the hydrodynamic series suggests different asymptotics:

u
∂u ε̃(u)

ε̃(u)
−→ (n, n) Pade −→ lim

u→∞
u
∂u ε̃(u)

ε̃(u)
= 3.00000022...

I Use (n, n − 3) Pade...
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Borel resummation

We constructed the Borel resummed T (τ) for τ > 0.2 (units set by
T (τ) ∼ 1π τ

− 13 as τ →∞)

Question: How does the Borel resummed all-order hydro compare with
true numerical evolution?
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Numerical simulations
M. Heller, RJ, P, Witaszczyk, 1103.3452, 1203.0755

Describe the time dependent evolving boost-invariant strongly coupled
plasma system

↓
Describe it in terms of lightest degrees of freedom on the AdS side

which are relevant at strong coupling

↓

ds2 =
gµν(τ, z)dxµdxν + dz2

z2
≡ g5Dαβdxαdxβ

↓
Compute the time-evolution by solving (numerically) 5D Einstein’s

equations

Rαβ −
1
2

g5DαβR − 6 g5Dαβ = 0

↓
Extract physical observables from the numerical geometry
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What physics can we extract?

I Asymptotics of gµν(xρ, z) at
z ∼ 0 gives the
energy-momentum tensor
Tµν(xρ) of the plasma system

I We can test whether Tµν(xρ)
is of a hydrodynamic form...

I We can check for local
thermal equilibrium

I The area of the apparent
horizon defines for us the
entropy density

I We observe some initial
entropy

I It is convenient to organize
initial data according to their
initial entropy
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Review of main results

1. As a measure of energy density introduce the effective temperature
(≡ temperature of a thermal system with the same energy density)

2. Form the dimensionless product w ≡ Teff · τ
3. For all initial conditions considered, viscous hydrodynamics works

very well for w ≡ Teff · τ > 0.7

(natural values for RHIC: (τ0 = 0.25 fm, T0 = 500 MeV ) assumed in
[Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63)

4. The plasma system is described by viscous hydrodynamics even
though it is not in true thermal equilibrium — there is still a
sizable pressure anisotropy

∆pL ≡ 1− pL

ε/3
∼ 0.7
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Review of main results

Initial entropy turns out to be a key characterization of the initial
state

1. There is a clear correlation of produced entropy with the initial
entropy...

2. Similar conclusion holds for e.g. (effective) thermalization time (un-
derstood here as the transition to a viscous hydrodynamic description)
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Remarks:

I As mentioned earlier, we get rid of the dependence on the number of
degrees of freedom by parametrizing the energy density through an
effective temperature given by

ε(τ) =
3
8

N2c π
2T 4eff (τ)

I Previously, we normalized our initial data by setting

Teff (τ = 0) = 1

but this is generically unknown in realistic heavy-ion collisions...
I It is much better to fix the normalization through the hydrodynamic

tail...

πTeff (τ) ∼ 1

τ
1
3

in the τ →∞ limit

The coefficient ‘1’ fixes the units of τ .

return to the Borel resummation...
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Effective temperature Teff as a function of τ

green line: 3rd order hydrodynamics
red line: Borel resummed hydrodynamics
• The point τ0 = 0.25 fm, T0 = 500 MeV (w ≡ T τ = 0.63) corresponds
here to τ ∼ 3.14 (our thermalization criterion was very strict)
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I Higher order (resummed) hydro is important for small entropy initial
data

Large and intermediate
initial data

‘Small’ initial data
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How to model deviations from
(all-order) hydrodynamics?

I Is there a simple phenomenological model simpler than 5D Einstein’s
equations??

Tµν(T , uρ) ∼ hydrodynamics

Tµν(T , uρ, . . .) ∼ hydrodynamics + additional DOF

c.f. anisotropic hydrodynamics of Florkowski, Strickland and
collaborators

I Can we get information on the possible (number of) degrees of
freedom from our knowledge of a) resummed hydrodynamics b) a
large set of diverse numerical profiles
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Quasinormal modes — still very preliminary!

I Each quasinormal mode represents an independent degree of
freedom from the 4D perspective...

I Recall the generic structure of QNM modes for a boost-invariant
flow (including first viscous corrections)

δε(τ) ∼ τ−2e−iωQNM
∫
πT (τ)dτ

I One can estimate that s =
∫ τ
0 πT (τ)dτ at the transition to

hydrodynamics would set the scale for how many QNM would be
relevant there...

I It turns out that s = 1.6...3 and Im ωQNM = 2.75, 4.76, 6.77, ...
I A few additional DOF might suffice?
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Quasinormal modes — still very preliminary!

Many questions: nonlinearities, fitting intervals, 4D formulation??
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Conclusions

I We calculated the gradient expansion to very high orders
I The hydrodynamic expansion has zero radius of convergence
I The singularities in the Borel plane have a clear physical origin —

they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I Analogy with perturbative expansion in QFT and instanton effects
I Hydrodynamic expansion captures quantitatively fine details of these

leading nonhydrodynamic modes
I We do not find poles on the positive real axis suggesting the

existence of a Borel resummation, which can be constructed using
Pade approximants

I Higher order hydrodynamics seems relevant for ‘small’ initial data...
I 4D perspective on deviations from hydro???
I QNM frequencies for QCD??? (lattice?)
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