A String Theory Explanation for Quantum Chaos in the Hadronic Spectrum

Leopoldo A. Pando Zayas University of Michigan

Holography and QCD, IPMU, Tokyo, Japan

L. PZ and D. Reichmann, JHEP 1304 (2013) 083, arXiv: 1209.5902
P. Basu, D.Das, A. Ghosh, L PZ, JHEP 1205 (2012) 077, arXiv:1201.5634
P. Basu and LPZ, Phys.Rev. D84 (2011) 046006, arXiv:1105.2540

Outline

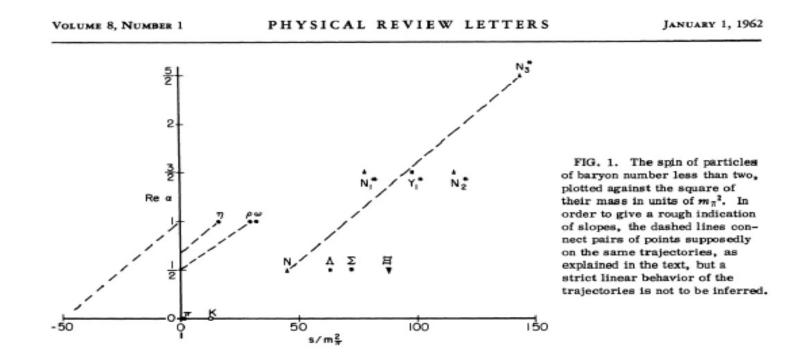
- String theory and classical trajectories revisited.
- Chaos (classical) around holographic Regge Trajectories.
- What is quantum chaos in the spectrum of hadrons in QCD and other strongly coupled theories?
- The spectrum of highly excited Hadrons in holographic models.

What has string theory been doing lately (last ten years)?

- String in curved spacetimes with RR fluxes.
- Semiclassical quantization: BMN, GKP (integrability) and Regge Trajectories.
- Prominent role of classical trajectories.

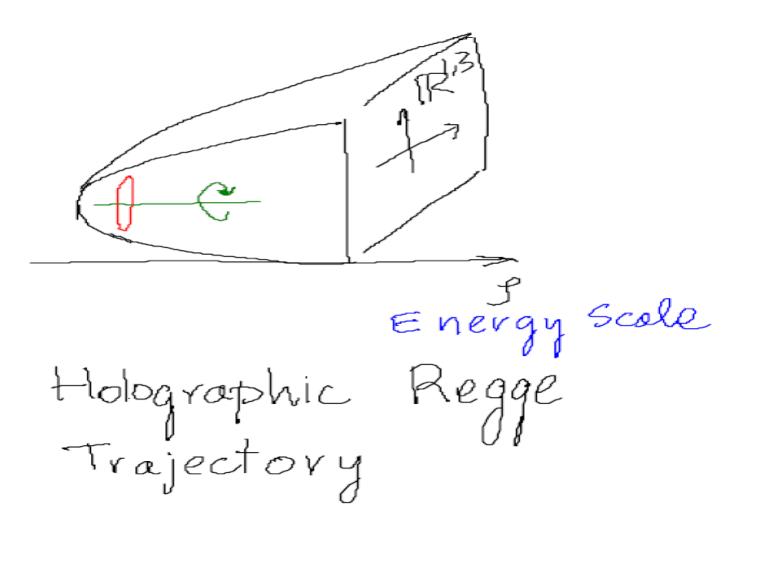
Could QCD be a string theory?

Regge trajectories are best explained by a string



 $J \sim M^2$

Holographic Regge Trajectories

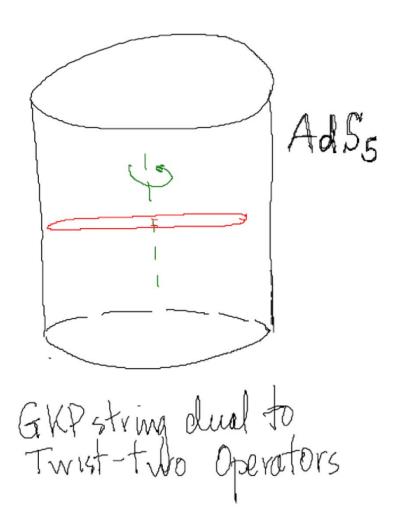


GKP Operators (twist-two in QCD)

 $\operatorname{Tr}\Phi^{I}\nabla_{(a_{1}}\ldots\nabla_{a_{n}})\Phi^{I}$

 $\Delta - S = (\sqrt{\lambda}/\pi) \ln S$

GKP String and Twist-Two Operators



Classical Chaos around Holographic Regge Trajectories

$$\mathcal{L} = -\frac{1}{2\pi\alpha'}\sqrt{-g}g^{ab}G_{MN}\partial_a X^M\partial_b X^N$$

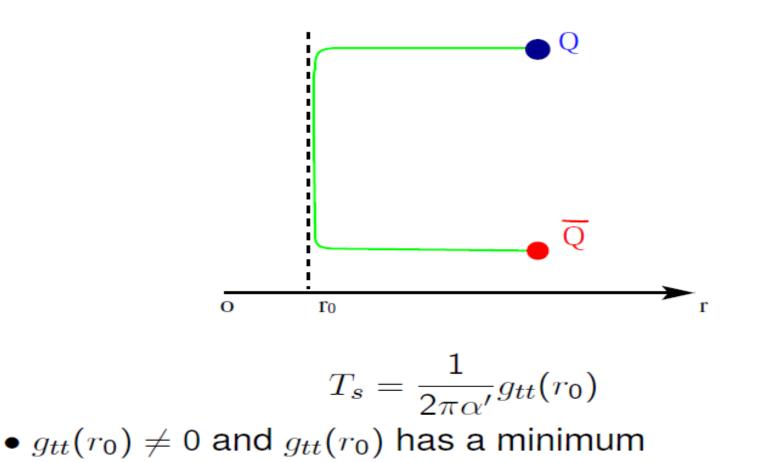
Virasoro constraints to get to the conformal gauge.

$$ds^{2} = a^{2}(r)dx_{\mu}dx^{\mu} + b^{2}(r)dr^{2} + c^{2}(r)d\Omega_{d}^{2}$$

A generic property of holographic duals of confining theories

Confinement == Wilson Area Law

- End of Space.
- Wilson Loop shows confining behavior.



Regge Trajectories in Holography

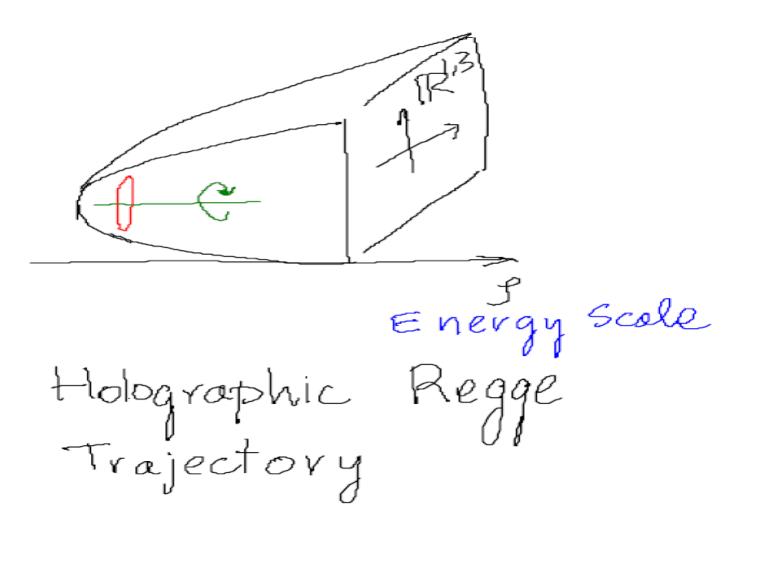
$$x^0 = e \tau$$
, $x^1 = e \cos \tau \sin \sigma$, $x^2 = e \sin \tau \sin \sigma$.

$$E = 4 \frac{e g_{00}(r_0)}{2\pi\alpha'} \int d\sigma = 2\pi g_{00}(r_0) T_s e, \qquad J = 4 \frac{g_{00}(r_0)e^2}{2\pi\alpha'} \int \sin^2 \sigma d\sigma = \pi g_{00}(r_0) T_s e^2$$

 $T_{s, eff} = g_{00}(r_0)/(2\pi\alpha')$

$$J = \frac{1}{4\pi T_{s, eff}} E^2 \equiv \frac{1}{2} \alpha'_{eff} t$$

Holographic Regge Trajectories



Winding Strings

$$t = t(\tau), \quad r = r(\tau),$$

 $x_1 = R(\tau) \sin \alpha \sigma, \quad x_2 = R(\tau) \cos \alpha \sigma.$

Equations of motion

$$\frac{d}{d\tau} \left(b^2(r) \frac{d}{d\tau} r(\tau) \right) = \frac{E^2}{a^3(r)} \frac{d}{dr} a(r) + a(r) \frac{d}{dr} a(r) [\dot{R}^2 - \alpha^2 R^2] + b(r) \frac{d}{dr} b(r) (\frac{d}{d\tau} r)^2,$$
$$\frac{d}{d\tau} \left(a^2(r) \frac{d}{d\tau} R(\tau) \right) = -\alpha^2 a^2(r) R(\tau).$$

Direct Analysis of Phase Space

• MN solution

$$\frac{d}{d\tau} \left(b^2(r) \frac{d}{d\tau} r(\tau) \right) = \frac{E^2}{a^3(r)} \frac{d}{dr} a(r) + a(r) \frac{d}{dr} a(r) [\dot{R}^2 - \alpha^2 R^2] + b(r) \frac{d}{dr} b(r) (\frac{d}{d\tau} r)^2,$$

$$\frac{d}{d\tau} \left(a^2(r) \frac{d}{d\tau} R(\tau) \right) = -\alpha^2 a^2(r) R(\tau).$$

MN

$$\begin{split} ds^2 &= e^{\phi} \left[\eta_{\mu\nu} dx^{\mu} dx^{\nu} + \alpha' g_s N \left(dr^2 + ds_5^2 \right) \right] \\ ds_5^2 &= e^{2g(r)} (e_1^2 + e_2^2) + \frac{1}{4} (e_3^2 + e_4^2 + e_5^2)), \\ e^{2\phi} &= e^{-2\phi_0} \frac{\sinh 2r}{2e^{g(r)}}, \\ e^{2g(r)} &= r \coth 2r - \frac{r^2}{\sinh^2 2r} - \frac{1}{4}, \end{split}$$

where $\mu,\nu=0,1,2,3$ and

where $\mu = 0, 1, 2, 3$, we set the integration constant $e^{\phi_{D_0}} = \sqrt{g_s N}$ The 3-form is

$$H^{RR} = g_s N \left[-\frac{1}{4} (w^1 - A^1) \wedge (w^2 - A^2) \wedge (w^3 - A^3) + \frac{1}{4} \sum_a F^a \wedge (w^a - A^a) \right]$$
$$A = \frac{1}{2} \left[\sigma^1 a(r) d\theta_1 + \sigma^2 a(r) \sin \theta_1 d\phi_1 + \sigma^3 \cos \theta_1 d\phi_1 \right]$$
(8)

$$e_{1} = d\theta_{1}, \qquad e_{2} = \sin \theta_{1} d\phi_{1},$$

$$e_{3} = \cos \psi \, d\theta_{2} + \sin \psi \sin \theta_{2} \, d\phi_{2} - a(\tau) d\theta_{1},$$

$$e_{4} = -\sin \psi \, d\theta_{2} + \cos \psi \sin \theta_{2} \, d\phi_{2} - a(\tau) \sin \theta_{1} d\phi_{1}, \quad \text{and the one-forms } w^{a} \text{ are given by:}$$

$$e_{5} = d\psi + \cos \theta_{2} \, d\phi_{2} - \cos \theta_{1} d\phi_{1}, \quad a(r) = \frac{r^{2}}{\sinh^{2} r}, \quad w^{1} + iw^{2} = e^{-i\psi} (d\theta_{2} + i\sin \theta_{2} d\phi_{2}), \qquad w^{3} = d\psi + \cos \theta_{2} d\phi_{2}$$

What we really need

$$a(r)^2 = e^{-\phi_0} \frac{\sqrt{\sinh(2r)/2}}{(r \coth 2r - \frac{r^2}{\sinh^2(2r)} - \frac{1}{4})^{1/4}}, \qquad b(r)^2 = \alpha' g_s N a(r)^2$$

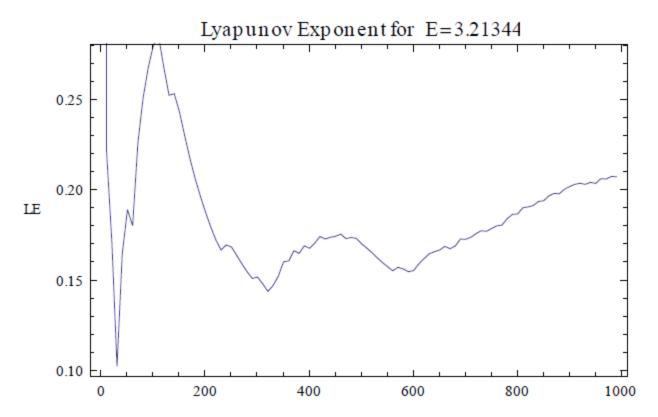
From particular solutions to a study of the full phase space.

What is chaos?

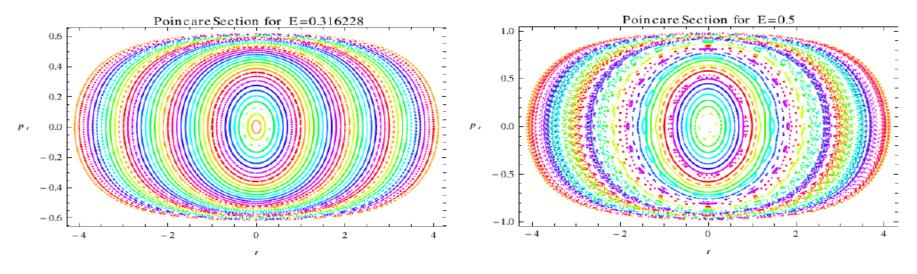
- Sensitivity to initial conditions.
- Largest Lyapunov exponent.
- Poincare sections and the Kolmogorov-Arnold-Moser theorem.
- Power spectrum.
- Fractal dimensions.

Lyapunov Exponent

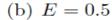
 $\lambda = \lim_{\tau \to \infty} \lim_{\Delta X_0 \to 0} \frac{1}{\tau} \ln \frac{\Delta X(X_0, \tau)}{\Delta X(X_0, 0)}$

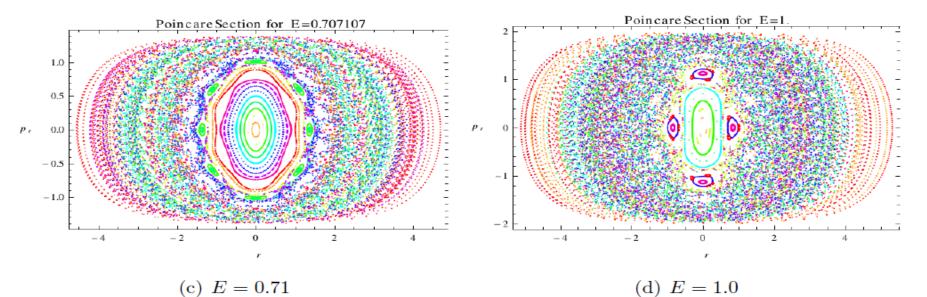


Explicitly Chaotic: Poincare Sections



(a) E = 0.316





Analytic Nonintegrability for Hamiltonian Systems (Virasoro)

- Given a system $\dot{\vec{x}} = \vec{f}(\vec{x})$
 - •Particular solution $\bar{x} = \bar{x}(t)$
- •If the nonlinear system admits some first integrals so does the variational equation.
- •Ziglin's theorems: Existence of a first integral of motion with the monodromy matrices around the straight line solution.
- •Morales-Ruiz: Monodromy to the nature of the Galois group of the NVE.
- •Kovacic's algorithm.

Analytic Non-integrability for Regge Trajectories:

The straight line solution

Properties of confining metrics:

$$a(r) \approx a_0 - a_2(r - r_0)^2$$

 $r = r_0$

$$\frac{d^2}{d\tau^2}R(\tau) + \alpha^2 R(\tau) = 0, \longrightarrow R(\tau) = A\sin(\alpha\tau + \phi_0).$$

Normal Variational Equation

 $r = r_0 + \eta(\tau)$

$$\ddot{\eta} + \frac{a_2 E^2}{2b_0^2 a_0^3} \Big[1 + \frac{2\alpha^2 A^2 a_0^4}{E^2} \cos 2\alpha \tau \Big] \eta = 0$$

 $\ddot{y} = (a + b\sin t + c\cos t)y$

 $b \neq -c$ Matthieu -- Non-integrable

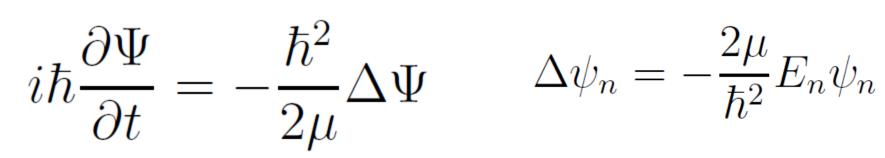
Conclusions of the first part:

- Established classically chaotic behavior around the Regge trajectories (numerically).
- The Regge trajectory itself is an island of integrability in a phase space that is generically chaotic (typical dynamical system).
- Established non-integrability analytically using a generic property of confining backgrounds.
- What to do next? How is this important for hadrons?

Quantum Chaos

 The study of quantum systems whose classical limit is chaotic (Einstein 1917): Spectrum

$$\oint_{C_i} \mathbf{p} \cdot d\mathbf{q} = n_i h \quad i = 1, \dots, d,$$

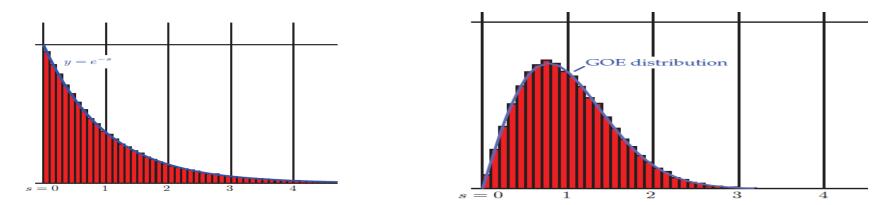


Properties of Eigenvalues $N(\lambda) = \#\{\lambda_n \le \lambda\}$ $\lambda \to \infty, N(\lambda) \sim \text{area(Billiard)}/(4\pi) \lambda$

Level Spacing Distribution $\lambda_{n+1} - \lambda_n \qquad P(s)$

Quantum Chaos

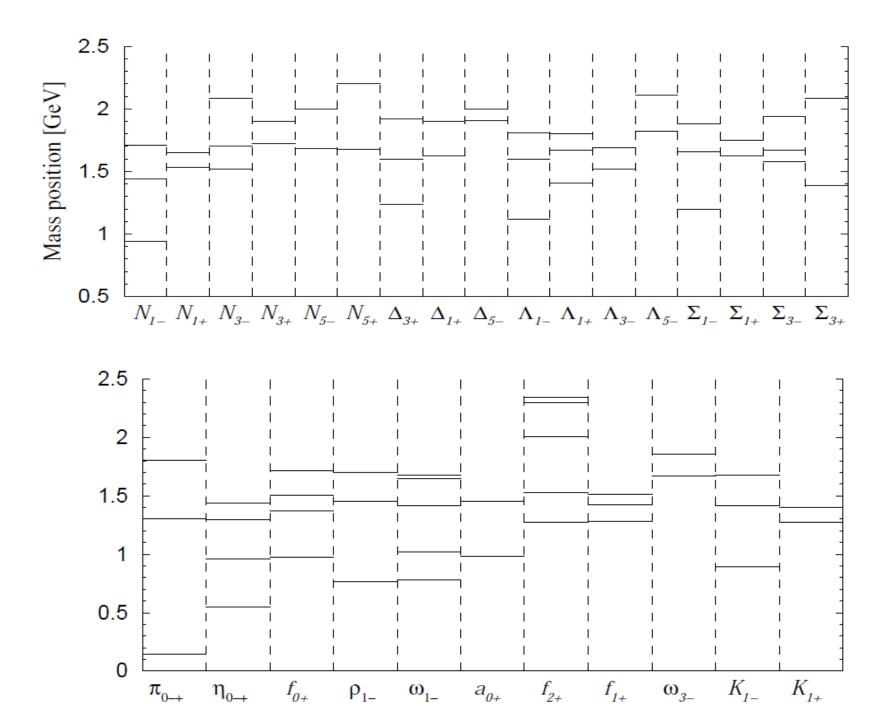
•Classically Integrable Systems: Eigenvalue distribution coincides with a sequence of uncorrelated levels (Poisson ensemble) with the same spacing (Berry-Tabor)

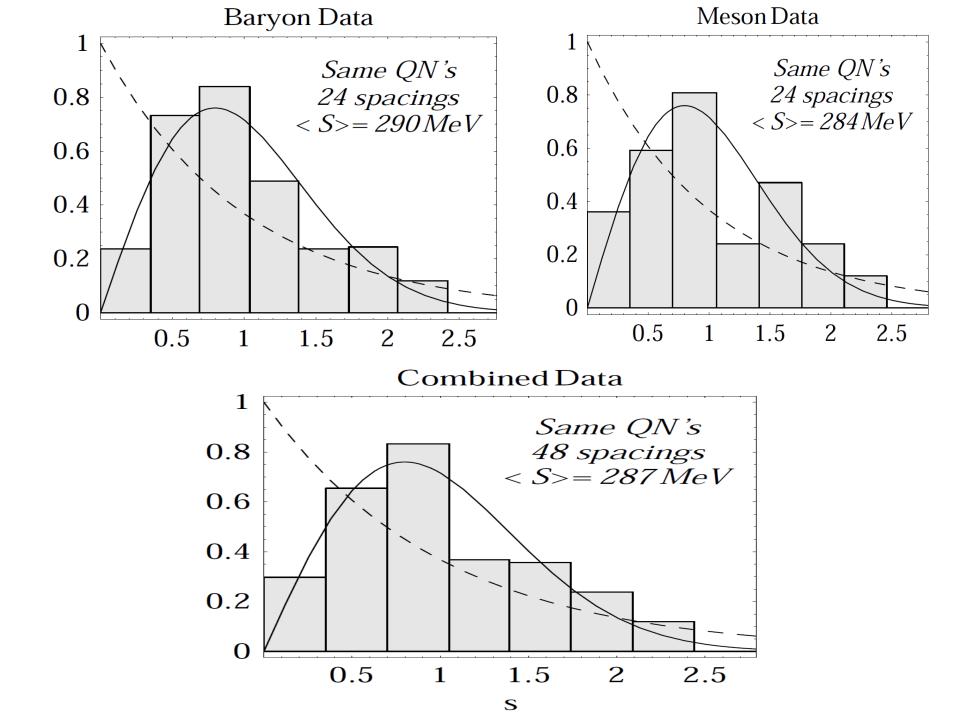


•Classically Chaotic Systems: Eigenvalue spacing distribution coincides with the corresponding quantity for eigenvalues of a suitable ensemble of random matrices (Bohigas, Giannoni and Schmit)

Pascalutsa (2003)

- The experimentally measured mass spectrum of hadrons (N, Delta, Lambda, Sigma; and all the mesons up to f2(2340)) Particle Data Group Summary (2000).
- Conclusion: The nearest-neighbor massspacing distribution of the meson and baryon spectrum is described by the Wigner surmise corresponding to the GOE.





Lattice QCD (Markum)

 Lattice studies of QCD in the confinement and the deconfinement phases found similar results for eigenvalues of the Dirac operator, including with non-zero chemical potential and with supersymmetry (hep-lat/0505011, hep-lat/0402015) How to compute the string Spectrum?

$$\left(\mathcal{H} = \left(L_0 - a\right)\right) |\Psi\rangle \ge 0$$

 L_0 is a Virasoro generator as Schrodinger $|\Psi\rangle$ as a sort of vertex operator $\Psi \sim e^{ikX}$ $H \sim p^2$ mass-shell condition $(k^2 = 0)$

Classical to Quantum via Minisuperspace

$$S = -\frac{1}{2\pi\alpha'} \int d\tau \int d\sigma \, G_{MN} \left(-\dot{X}^M \dot{X}^N + X'^M X'^N \right)$$

$$X^M = \left(x^n(\tau), X^9(\sigma)\right)$$

$$\mathcal{H} = \frac{1}{2}g^{mn}p_mp_n + \frac{1}{2}V(x),$$

$$g_{mn}(x) = \int_0^L d\sigma G_{MN}(x), \qquad V(x) = \int_0^L d\sigma G_{99}(x)X'^9X'^9$$

 $-\Delta\Psi + V(x)\Psi = 0$

 $ds^{2} = A^{2}(r)(-dt^{2} + dR^{2} + R^{2}d\varphi^{2} + dz^{2}) + B^{2}(r)dr^{2} + ds_{5}^{2}$

$$\varphi(\sigma) = \alpha \sigma \quad X^9(\sigma) = \varphi(\sigma)$$

$$\left(-\partial_R^2 - l(r)\partial_r \left(m(r)\partial_r\right) + \omega^2 R^2 A(r)^4\right)\Psi = E^2 \Psi$$

$$l(r) = \frac{1}{(A(r)B(r)\omega_5(r))} \\ \omega = \frac{\alpha}{(\pi\alpha')}$$

MN

$$\begin{split} ds^2 &= e^{\phi} \left[\eta_{\mu\nu} dx^{\mu} dx^{\nu} + \alpha' g_s N \left(dr^2 + ds_5^2 \right) \right] \\ ds_5^2 &= e^{2g(r)} (e_1^2 + e_2^2) + \frac{1}{4} (e_3^2 + e_4^2 + e_5^2)), \\ e^{2\phi} &= e^{-2\phi_0} \frac{\sinh 2r}{2e^{g(r)}}, \\ e^{2g(r)} &= r \coth 2r - \frac{r^2}{\sinh^2 2r} - \frac{1}{4}, \end{split}$$

where $\mu,\nu=0,1,2,3$ and

where $\mu = 0, 1, 2, 3$, we set the integration constant $e^{\phi_{D_0}} = \sqrt{g_s N}$ The 3-form is

$$H^{RR} = g_s N \left[-\frac{1}{4} (w^1 - A^1) \wedge (w^2 - A^2) \wedge (w^3 - A^3) + \frac{1}{4} \sum_a F^a \wedge (w^a - A^a) \right]$$
$$A = \frac{1}{2} \left[\sigma^1 a(r) d\theta_1 + \sigma^2 a(r) \sin \theta_1 d\phi_1 + \sigma^3 \cos \theta_1 d\phi_1 \right]$$
(8)

$$e_{1} = d\theta_{1}, \qquad e_{2} = \sin \theta_{1} d\phi_{1},$$

$$e_{3} = \cos \psi \, d\theta_{2} + \sin \psi \sin \theta_{2} \, d\phi_{2} - a(\tau) d\theta_{1},$$

$$e_{4} = -\sin \psi \, d\theta_{2} + \cos \psi \sin \theta_{2} \, d\phi_{2} - a(\tau) \sin \theta_{1} d\phi_{1}, \quad \text{and the one-forms } w^{a} \text{ are given by:}$$

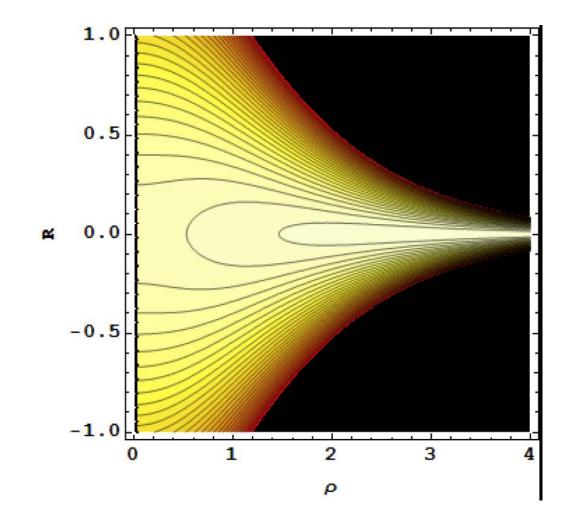
$$e_{5} = d\psi + \cos \theta_{2} \, d\phi_{2} - \cos \theta_{1} d\phi_{1}, \quad a(r) = \frac{r^{2}}{\sinh^{2} r}, \quad w^{1} + iw^{2} = e^{-i\psi} (d\theta_{2} + i\sin \theta_{2} d\phi_{2}), \qquad w^{3} = d\psi + \cos \theta_{2} d\phi_{2}$$

WQCD

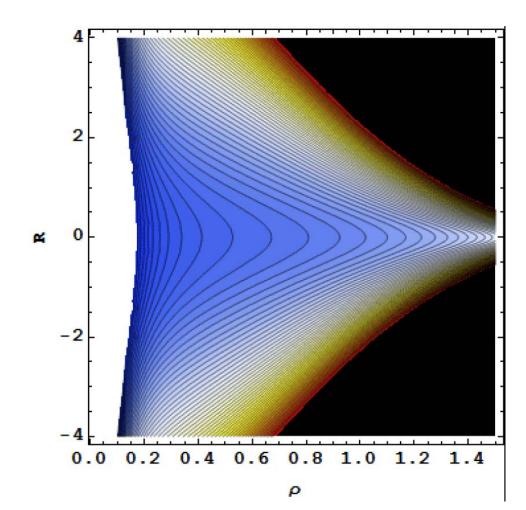
$$ds^{2} = \left(\frac{r}{L}\right)^{3/2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \left(\frac{L}{r}\right)^{3/2} \frac{dr^{2}}{f(r)} + ds_{5}^{2}$$
$$ds_{5}^{2} = L^{3/2} r^{1/2} \left(\frac{4r}{9r_{0}} f(r) d\theta^{2} + d\Omega_{4}^{2}\right),$$
$$f(r) = 1 - \frac{r_{0}^{3}}{r^{3}}, \qquad L = (\pi N g_{s})^{\frac{1}{3}} \alpha'^{\frac{1}{2}},$$
$$e^{\Phi} = g_{s} \left(\frac{r}{L}\right)^{3/4}.$$

 $F_4 = 3L^3\omega_4$

MN Potential



WQCD Potential

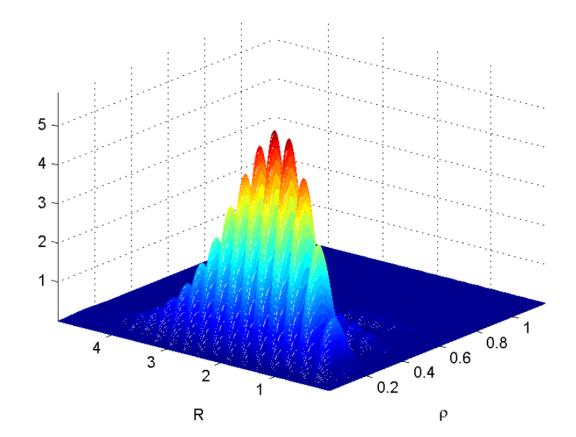


Winding string sector

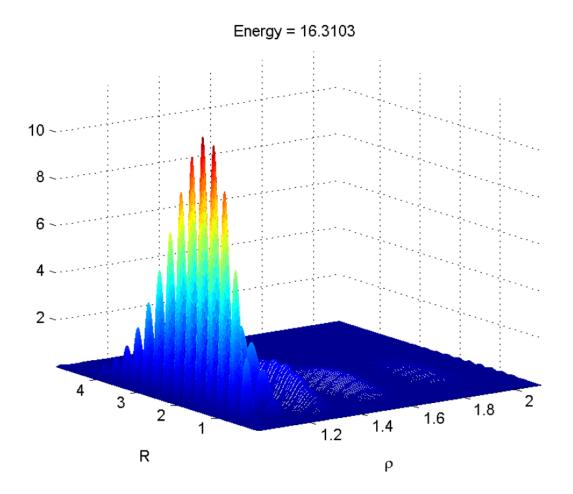
- The string can unwind.
- Not a clear separation of sectors.
- Can we show that the typical wave function is not localized close to R=0?

MN Wave function

Energy = 14.4432



WQCD Wave Function

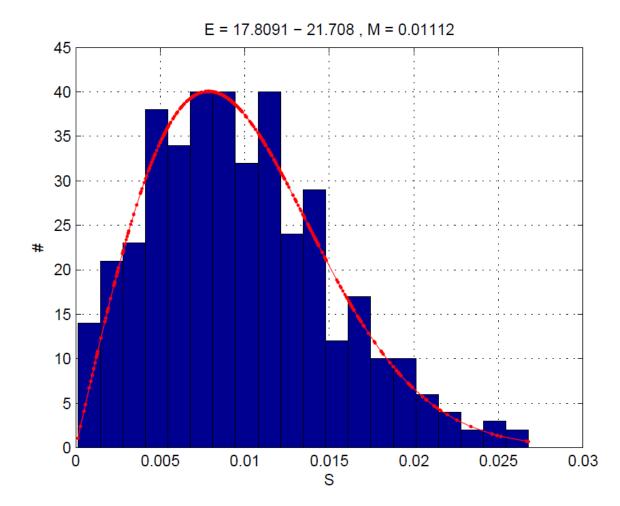


Holographic Spectrum

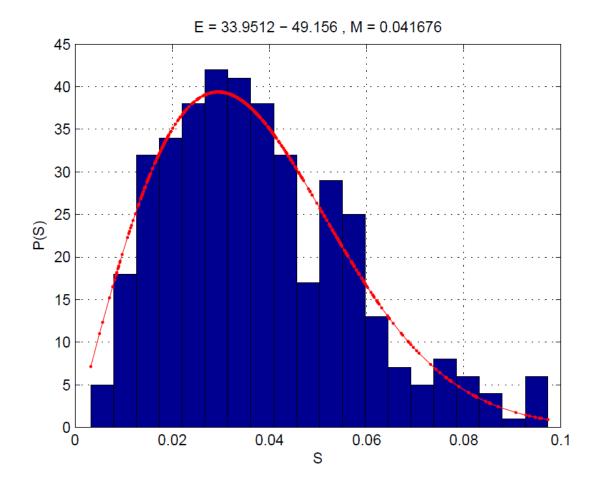
- Choose an arbitrary energy range (above the range of small interactions) spanning about 400 energy levels.
- We calculate the energy difference between eigenvalues in the chosen range and plot them on a histograms, and compare them to Wigner distributions

$$P(s) \sim s \exp(-(s/M)^2)$$

MN



WQCD



How good is the fit?

- The root mean square (RMS) between Wigner's distribution and data is below 10⁽⁻³⁾ when the distribution is normalized so the sum is one.
- This excellent matching to Wigner distribution proves our main claim that the spectrum of hadrons in the MN and WQCD theories shows a quantum chaotic eigenvalue distribution.

Conclusions

- Found a spectrum of hadrons compatible with observations and with the Wigner's surmise.
- A setup for quantum chaos in the quantum/classical setup

To do List

- Toward detailed structure: Mesons, Baryons.
- How exactly is Wigner's principle at work. (Block-diagonal matrices from the geometric confining property).
- Do we have Bjorken scaling in holographic models?
- Anderson Localization: insulator/metal and Poisson/Wigner.

Bjorken Scaling?

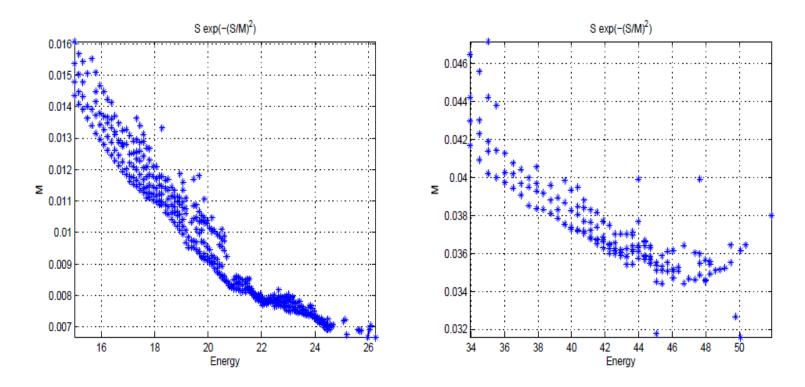


FIG. 5: Dependence of M on the energy region for the MN background and for the WQCD background.