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Outline

Anisotropic systems of interest in condensed matter theory
(p-wave superfluids, liquid crystals, . . . )

and (here):

anisotropic (pre-equilibrium) quark-gluon-plasma

Two top-down models for N = 4 super-Yang-Mills plasma with fixed anisotropy

Singular AdS5 [Janik & Witaszczyk (2008)]

Regular axion-dilaton-gravity [Mateos & Trancanelli (2011)]

♣ Study observables of potential interest to heavy-ion physics:

Electromagnetic spectral functions, conductivities

Hydrodynamic transport: shear viscosity

Jet quenching

Heavy quark potential
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Anisotropy and heavy ion collisions

Weak coupling (“hard anisotropic loops”):
increasing anisotropy after collision counteracted by
nonabelian plasma instabilities (leading to anomalous viscosity [Asakawa, Bass, Müller ’06])

Numerical studies with fixed anisotropy: AR, Romatschke, Strickland; Arnold, Moore; Bödeker, Rummukainen

Recently: Real-time lattice simulations of nonabelian Boltzmann-Vlasov equations in Bjorken expansion:
Attems, AR, Strickland, PRD87 (2013)
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[∼ fm/c at LHC]

→ large anisotropies over lifetime of quark-gluon plasma
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Anisotropy and heavy ion collisions

Shock waves in AdS5 [Chesler, Yaffe ’10] – strong pressure anisotropies (not only initial)

see also talk by van der Schee

Florkowski, Martinez, Ryblewski, Strickland 2012:

anisotropic hydro

modifications to model instrinsic anisotropies
(resumming larger viscuous corrections)
throughout lifetime of plasma
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Dual geometry of (anisotropic) N=4 SYM plasma

Looking for simpler (holographic) model: stationary anisotropic plasma
(should be good for observables on sufficiently small time scales)

In Fefferman-Graham coordinates of asymptotically AdS (boundary at z = 0)

ds2 =
γµν(xσ, z)dxµdxν + dz2

z2
,

energy-momentum tensor contained in

γµν(xσ, z) = ηµν + z4γ(4)
µν (xσ) +O(z6)

as

〈Tµν(xσ)〉 =
N2
c

2π
γ(4)
µν (xσ)

Janik&Peschanski 2005: construct geometry for given profile 〈Tµν(xσ) and select physical
solutions from requirement of regularity of solutions of Einstein equations RMN = −4gMN
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Singular anisotropic gravity dual

Dual geometry for isotropic traceless energy momentum tensor:
the AdS black hole (black brane) – Hawking temperature is dual temperature

Dual geometry for static anisotropic 〈Tµν(xσ)〉 = diag(ε, PL, PT , PT )
contains naked singularity: [Janik & Witaszczyk 2008]

ds2 = gtt(u)dt2 + gLL(u)dx2
L + gTT (u)dx2

T + 1
4u2 du

2, u ≡ z2
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√
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6 . . .
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B 6= 0: horizon at u = 1/A becomes naked singularity
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Singular anisotropic gravity dual

x z

u

T

2

Asymptotically spherical congruences of (holographically) radial light-like geodesics which get deformed into
ellipsoids as they approach the singularity at u = 1 in units where A = 1.

Blue: prolate with B = −
√

6; Red: oblate with B =
√

2

←− AdS boundary

←− naked singularity
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Spectral function of current-current correlator

χµν(K) = −2 ImCretµν (K) = −2Im
∫
d4X e−iK·X 〈JEMµ (0)JEMν (X)〉ret.

AdS/CFT: [Huot, Kovtun, Starinets, Moore & Yaffe 2006]

Cretµν determined by asymptotic behavior of solutions of 5D Maxwell equations

∂A(
√
−ggACgBDFCD) = 0

(AC bulk gauge field dual to conserved U(1) R-current, not the electromagnetic field!)

[Son&Starinets:]

retarded correlator obtained by infalling boundary conditions (complex)

Anisotropic case:

different for wave vector k parallel or orthogonal to direction of anisotropy eL:

Cretµν =
∑
P aµνΠa(K) with orthogonal P aµν

a = T, L when k ‖ eL

a = 1, 2, L when k ‖ e1 ⊥ eL

Πa(K) = − 2
g2
B

lim
u→0

E′a(K,u)
Ea(K,u)

with gB = 16π2R/N2
c
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Spectral function of current-current correlator

JW-model:

Ea(K,u) described by 2nd order ODE’s in u

d2

du2φ+ C1
(1−u)

d
duφ+ ω2C2

(1−u)αφ = 0 with α = (2 +
√

36− 2B2)/4 ≤ 2

Isotropic: α = 2 allows Frobenius ansatz at singular point u = 1 (horizon) with
characteristic exponent ±iω/

√
8 (ingoing/outgoing b.c.)

Anisotropic: B 6= 0→ α < 2 ⇒ different character

coordinate transform = (1− u)(2−α) gives

d2

dx2φ+ β
x
d
dxφ+ γ2

x φ = 0 with some β, γ (→∞ as α→ 2)

Solution φ(u) ∼ (1− u)(2−α)(1−β)/2H(1,2)
1−β (2γ(1− u)(2−α)/2)

where the Hankel function of the second kind H(2)
ν corresponds to

ingoing boundary conditions – used in numerical evaluation

JW-naked singularity rather benign! Still allows purely ingoing b.c.!
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Spectral function of current-current correlator
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B = 0 (black ≡ result of Huot, Kovtun, Starinets, Moore & Yaffe 2006),
B = 0.1 (red, dashed), B = −0.1 (red, dotted),
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√
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6 (green,dotted),

B = ±3 (orange – involving negative pressures)
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Anisotropic AC conductivities

prolate vs. oblated anisotropies
black: B = 0
red: B = ∓0.1
blue: B = ∓1
green: B = −

√
6,+
√

2

orange: B = ∓3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ω

Χ
1
�Ω

,
Χ
L
�Ω

k = 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ω

Χ
1
�Ω

,
Χ
L
�Ω

k = 0

full lines: longitudinal conductivity
dashed lines: transverse conductivity

• DC conductivities zero ↔ hydrodynamic limit singular
↔ BUT: unphysical limit because it requires large times
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Regular top-down model: Anisotropic axion-dilaton gravity

[Mateos, Trancanelli ’11]

Boundary Bulk

S = SN=4 +
1

8π2

Z
θ(z)Tr F ∧ F

with θ(z) = 2πaz

Sbulk =
1

2κ2

Z p
−g
“
R + 12−

`
∂φ
´2

2
−
e2φ
`
∂χ
´2

2

”
with axion χ = az

anisotropy parameter a =
λnD7

4πNc
with nD7 density of D7 branes (magnetic source for χ)

extended along t, x, y but not z, u
homogeneously distributed along z-direction with nD7 = dND7/dz

anisotropic bulk geometry, anisotropic horizon

〈Tµν〉 = diag
`
ε, P⊥, P⊥, Pz

´
with conformal anomaly 〈Tµµ 〉 ∝ a4

ds2 =
e−

φ
2

u2

“
−FBdt2 +

du2

F
+ dx2 + dy2 +Hdz2

”
φ,F ,B,H . . . from numerical integrations

s =
(ε+ P⊥)

T
s =

Ah

4GV3
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|a| decides between oblate/prolate H ≥ 1: bulk geometry always prolate!

unlike JW model!
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Electrical DC conductivity

Because of regular (albeit anisotropic) horizon: ∃ hydrodynamic limit
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MT model: σ⊥ > σz independently of whether plasma oblate or prolate!

JW model: although σ⊥,z → 0, similarly ∀B: σ⊥(ω)/σz(ω) > 1 for small ω
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Shear viscosity in anisotropic fluid

Kubo formula

ηijkl = − lim
ω→0

1
ω

ImGRij,kl(ω, 0)

with GRij,kl(ω, 0) = −i
∫
dt dx eiωt θ(t) 〈[Tij(t,x), Tkl(0,0)]〉

Axisymmetry around z-axis (direction of anisotropy):

→ 2 different shear viscosities:

η⊥ = ηxyxy
(shear planes ⊥ z-axis)

η‖ = ηxzxz = ηyzyz
(shear planes ‖ z-axis)
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Calculating η/s with gauge/gravity duality

Kubo formula

ηijkl = − lim
ω→0

1
ω

ImGRij,kl(ω, 0)

with GRij,kl(ω, 0) = −i
∫
dt dx eiωt θ(t) 〈[Tij(t,x), Tkl(0,0)]〉

Gauge/gravity duality
perturb metric by ψa = hij and expand action to second order in ψa
⇒ effective action for massless scalar ψa

GRa (q) = − lim
u→0

Πa(u, q)
ψa(u, q)

with Πa =
∂L(2)

∂(∂uψa)
∝ ∂uψa

retarded correlator ↔ infalling boundary conditions at horizon

MT model:

Obtained numerically (on numerically given background!) and also from membrane paradigm
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Calculating η/s from membrane paradigm

Membrane paradigm [Iqbal, Liu ’08]

generic transport coefficient of
boundary theory

⇒ geometric quantities evaluated at
horizon

at the horizon

ψa(t, u,x) = ψa(v,x) where dv = dt−
√

guu
−gtt

du

regularity in infalling coordinates implies Πa ∝ ∂tψa

shear viscosity

ηa(uh) =
Πa(uh, q)
iωψa(uh, q)

with Πa(uh, q) ∝ iωψa

if ∂uηa = 0 in limit of zero momenta and frequency → trivial RG flow to boundary
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η/s from membrane paradigm

Two shear viscosity components with trivial RG flow
(coinciding with numerical result from Kubo formula/absorption calculation)

purely transverse ψ⊥ = hxy

η⊥ =
s

4π

longitudinal ψ‖ = hxz

η‖ = η⊥
gxx(uh)
gzz(uh)

=
s

4πH(uh) 0 5 10 15 20
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[AR, Dominik Steineder, PRL 2012]

Surprise: Violation of the conjectured viscosity bound!
unbounded: H →∞ as a

T
→∞,

but eventually breakdown of supergravity approximation (naked singularity at T = 0)
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Third shear viscosity component in bulk (only)

3rd shear viscosity ψL̃ = hzx

ηz zx x = η⊥
gzz(uh)
gxx(uh)

=
sH(uh)

4π
>

s

4π

Reason for 3rd viscosity component, while axi-symmetry should allow only 2: Wilsonian energy-momentum

tensor away from the boundary is nonsymmetric! (cp. Adams, Balasubramanian, McGreevy JHEP 0811)

Nontrivial flow towards boundary!
Mamo JHEP1210: analytic check to order a2;

Steineder (thesis 2012): to all orders numerically

∂u
(
ηL̃
)
∝ a2 ⇒ ηL̃ = ηL̃(u)

↔ only 2 shear viscosities in
boundary theory
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Other deviations from universal KSS result

Prior:

higher derivative gravity!

finite coupling corrections increase η/s Buchel et. al., Nucl. Phys. B707 (2005)

0

h̄

4πkB

η

s

g2Nc

but also higher derivative gravity theories that violate the bound were found
Brigante et. al., Phys. Rev. D77 (2008); Kats, Petrov, JHEP 0901 (2009)

spatial anisotropy:
non-commutative N = 4 SYM plasma satisfies the bound

Landsteiner, Mas, JHEP 0707 (2007)

bottom-up model for anisotropic p-wave superfluids gave non-universal shear

viscosity component above the bound Erdmenger et. al., Phys. Lett. B699 (2011); ...

anisotropic axion-dilaton gravity is the first example of shear viscosity of

Einstein gravity dual which violates the bound AR, Steineder, PRL 108 (2012)

By now also:

• anisotropic top-down (Einstein) gravity dual of 5+1d field theory from NS5/F1
branes also violates the bound
Polchinski, Silverstein, Class. Quant. Grav. 29 (2012)
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Implications for QGP hydro simulations?

v2 dominantly driven by η⊥ which respects KSS bound
but (insignificant) effect for rapidity dependence:
B. Schenke: MUSIC code (private communication)

Hydro simulations with ηL 6= η⊥:
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Jet quenching

Giataganas JHEP 1207; Chernicoff et. al. JHEP 1208; Rebhan, DS, JHEP 1208

momentum broadening ∆p of a hard parton moving at angle θ wrt z-axis
θ = 0: rotationally invariant broadening
θ 6= 0: dependence on directions orthogonal to parton trajectory

φ = 0 . . . π
2

: ∆p measured orthogonal to . . . in plane [v̂ ẑ]

θ = π
2

: φ = 0→ q̂⊥, φ = π
2
→ q̂L MT: always q̂L > q̂⊥

Jet

z (beam axis)θ
φ

∆p

oblate prolate plasma

• agrees with Hard Anisotropic Loop calculation [Romatschke ’07; Baier, Mehtar-Tani ’08]

for oblate, but not for prolate

(but this calculation is w.r.t. state prior to development of plasma instabilities!)
• inclusion of effects of developed chromomagnetic fields from plasma instabilities
however also points to q̂L > q̂⊥ for both oblate and prolate plasma

[Dumitru et al., 2006; Ipp, AR, Strickland, in preparation]

reason: always |B⊥| > |E⊥| and |EL| > |E⊥| ! . . . fortuitous agreement?
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Jet quenching

Qualitative differences:

JW model (ε = const.)

oblate

MT model (s = const.)

prolate

Opposite trend in JW model for oblate plasma (more relevant for QGP)!
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More differences between JW and MT models

Spectral densities for photons
AR, Steineder JHEP 1108 (2011); Patino, Trancanelli, JHEP 1302 (2013)
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Stark differences, in particular for large momenta!
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More differences between JW and MT models

Heavy quark potentials Giataganas JHEP 1207; AR, Steineder, JHEP 1208
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MT model

JW: quarks separated in z-direction have deeper (shallower) potential for oblate (prolate)
anisotropy in qualitative agreement with weak coupling (hard anisotropic loop) results

MT: always qualitatively like prolate JW

A. Rebhan Strongly Coupled Anisotropic Plasmas Holography and QCD 24 / 27



Thermodynamics of MT model (infinite coupling)

Mateos, Trancanelli, JHEP 1107; Gynther, AR, Steineder, JHEP 1210

Instability against redistribution of homogeneous anisotropy “charge” density a
into inhomogeneous (lasagna) phase for 0 < a < a2

(vaguely reminiscent of filamentation instability in weakly coupled anisotropic plasma)

a

f
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a2
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Thermodynamics of MT model (zero. . . weak coupling)

Gynther, AR, Steineder, JHEP 1210

plasma of weakly (or non-) interacting vector bosons coupled to anisotropic
Chern-Simons charge
• anisotropic dispersion laws, but no unstable modes (unlike hard anisotropic loop
theory!)
• yet: even richer phase diagram with instabilities of homogeneous phase against
redistribution of anisotropy charge
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Conclusion

Two interesting toy models for strongly coupled anisotropric SYM plasmas:
JW model: simple singular geometry with rather benign naked singularity
MT model: regular equilibrium geometry with anisotropy through linear axion

MT model leads to longitudinal shear viscosity ηL
below the KSS result universal to isotropic Einstein gravity duals!
(unfortunately elliptic flow rather insensitive to ηL)

Stark differences of heavy-ion physics observables in both models!
Jet quenching: only MT model same trend as expected from weak-coupling
plasma instabilities
Heavy quark potential: only JW model same trend as weak coupling results

Time-dependent nonequilibrium AdS with colliding shock waves could in
principle decide whether any of those are good toy models!
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