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Outline

Anisotropic systems of interest in condensed matter theory
(p-wave superfluids, liquid crystals, .. .)

and (here):
anisotropic (pre-equilibrium) quark-gluon-plasma
Two top-down models for N = 4 super-Yang-Mills plasma with fixed anisotropy

@ Singular AdSs [Janik & Witaszczyk (2008)]
@ Regular axion-dilaton-gravity [Mateos & Trancanelli (2011)]

& Study observables of potential interest to heavy-ion physics:

o Electromagnetic spectral functions, conductivities
@ Hydrodynamic transport: shear viscosity
@ Jet quenching

@ Heavy quark potential
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Anisotropy and heavy ion collisions

Weak coupling (“hard anisotropic loops”):
increasing anisotropy after collision counteracted by

nonabelian plasma instabilities (leading to anomalous viscosity [Asakawa, Bass, Miiller '06])

Numerical studies with fixed anisotropy: AR, Romatschke, Strickland; Arnold, Moore; Bédeker, Rummukainen

Recently: Real-time lattice simulations of nonabelian Boltzmann-Vlasov equations in Bjorken expansion:
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— large anisotropies over lifetime of quark-gluon plasma
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Anisotropy and heavy ion collisions

Shock waves in AdSs [Chesler, Yaffe '10] — Strong pressure anisotropies (not only initial)

pz =1
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e

see also talk by van der Schee

Florkowski, Martinez, Ryblewski, Strickland 2012:
anisotropic hydro

modifications to model instrinsic anisotropies
(resumming  larger viscuous  corrections)
throughout lifetime of plasma
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Dual geometry of (anisotropic) N=4 SYM plasma

Looking for simpler (holographic) model: stationary anisotropic plasma
(should be good for observables on sufficiently small time scales)

In Fefferman-Graham coordinates of asymptotically AdS (boundary at z = 0)

Yur (7, 2)dxtdz” + d2*
2 i

ds® =

z

energy-momentum tensor contained in

'V;u/(x ,2) = Nuw + z* (4)( 7)+ 0(26)

as
N
4
(T (7)) = 7( ) (%)
Janik&Peschanski 2005: construct geometry for given profile (T}, () and select physical
solutions from requirement of regularity of solutions of Einstein equations Ry;n = —4gym N
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Singular anisotropic gravity dual

Dual geometry for isotropic traceless energy momentum tensor:
the AdS black hole (black brane) — Hawking temperature is dual temperature

Dual geometry for static anisotropic (T}, (x”)) = diag(e, Pr, Pr, Pr)
contains naked singularity: [Janik & Witaszczyk 2008]

2 2 2 2 1 2 92
ds® = gtt(u)dt + gLL(u)de + gTT(u)dXT + mdu s U=z
1 _ —=3 —
gre(u) = ,E(1+A2u2)1/2 36-2B%/4(1 _ 42,,2)1/2+V/36-2B2/4
1 _ — 3 B —
gro(u) = ;(1“"142“2)1/2 B/3+VB6-2B2/12(1 _ 42,,2)1/2+B/3-V/36-2B%/12
1 —— o —
grr(u) = ;(1+A2u2)1/2+B/6+ 36—-2B /12(17142“2)1/2 B/6 36—2B2/12

with e = 4236 —2B7, P, = 42\/36 —2B% — 2475 p; — A\ /35 _3B2 4 A2B
B = —v/6...v2 delimited by Pr > 0 and P, > 0, resp. (otherwise B = —/18.../18)
B # 0: horizon at u = 1/A becomes naked singularity

2, {6—\/36—2B2} /4

(induced metric at t = const., u = 1/A is degenerate: g7, 1, 9% o (1 — AZu
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Singular anisotropic gravity dual

«—— naked singularity

Asymptotically spherical congruences of (holographically) radial light-like geodesics which get deformed into
ellipsoids as they approach the singularity at w = 1 in units where A = 1.

Blue: prolate with B = —+/6: Red: oblate with B = /2
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Spectral function of current-current correlator

Xuv(K) = =2Im CleH(K) = —2Im [ d* X e~ X (JEM(0) JFM (X))ret-
AdS/CFT: [Huot, Kovtun, Starinets, Moore & Yaffe 2006]
C’ﬁit determined by asymptotic behavior of solutions of 5D Maxwell equations

a(v/=99°gPPFcp) =0

(Ac bulk gauge field dual to conserved U(1) R-current, not the electromagnetic field!)

[Son&Starinets:]
retarded correlator obtained by infalling boundary conditions (complex)

Anisotropic case:
different for wave vector k parallel or orthogonal to direction of anisotropy er.:
Clet =37 P, I, (K) with orthogonal P,
a=T,L when k| er,
a=1,2,Lwhenk| e Lep
2 . E/(K,u)

lim

I, (K) = —— lim =&
( ) 9123 uﬂOEa(K,U)

with gp = 1672R/N?
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Spectral function of current-current correlator

JW-model:
(K u) described by 2nd order ODE's in u
L0 + a2y o+ (fiffu ¢=0 witha=(2+36—2B2)/4<2

Isotropic: oo = 2 allows Frobenius ansatz at singular point u =1 (horizon) with
characteristic exponent +iw/+/8 (ingoing/outgoing b.c.)

Anisotropic: B # 0 — «a < 2 = different character
coordinate transform = (1 — u)~®) gives

12¢+zdm¢+ (;5—0 with some 8, (— oo as o — 2)
Solution  ¢(u) ~ (1 —u)@=)(1= ﬁ)/QH(l 2)(27( u)(2=2)/2)

where the Hankel function of the second kind H,, 2 corresponds to
ingoing boundary conditions — used in numerical evaluation

JW-naked singularity rather benign! Still allows purely ingoing b.c.!
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Spectral function of current-current correlator

0 1 2 3 4 5

dashed lines: oblate, and dotted lines: prolate anisotropies

0 (black = result of Huot, Kovtun, Starinets, Moore & Yaffe 2006),
0.1 (red, dashed), B = —0.1 (red, dotted),

1 (blue, dashed), B = —1 (blue, dotted),

/2 (green, dashed), B = —/6 (green,dotted),

+3 (orange — involving negative pressures)
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Anisotropic AC conductivities

prolate vs. oblated anisotropies

black: B =0
red: B = F0.1
blue: B = F1

green: B = —/6, +v2

orange: B = F3
3.0 T T T T T T T

XI/M’XL/U)

full lines: longitudinal conductivity
dashed lines: transverse conductivity

e DC conductivities zero < hydrodynamic limit singular
< BUT: unphysical limit because it requires large times
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Regular top-down model: Anisotropic axion-dilaton gravity

[Mateos, Trancanelli '11]
Boundary Bulk

_ L 1 86)2  €2*(8x)2
S_SN:4+@/6(z)TrF/\F Sbulk:ﬁ/\/jg(RH%(Z) 7%)
with 0(z) = 2maz with axion x = az

. Anpz
anisotropy parameter a =

Gauge Theory
a=0

dx=0

with np7 density of D7 branes (magnetic source for x)
c extended along ¢, x,y but not z,u
homogeneously distributed along z-direction with np7 = dNp7/dz

Gauge Theory
a#0

anisotropic bulk geometry, anisotropic horizon
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Electrical DC conductivity

Because of regular (albeit anisotropic) horizon: 3 hydrodynamic limit

20f
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a/T

MT model: 0, > o, independently of whether plasma oblate or prolate!

JW model: although o, . — 0, similarly VB: o, (w)/o,(w) > 1 for small w
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Shear viscosity in anisotropic fluid

Kubo formula
. 1
Nijkl = — uljlgb " Im Gﬁ,kz(w, 0)
with G} })(w,0) = —i [ dt dx ™" 0(t) ([Ti;(t, %), Tri(0,0)])

Axisymmetry around z-axis (direction of anisotropy):
— 2 different shear viscosities:

@ N1 = Nayzxy
(shear planes L z-axis)

(shear planes || z-axis)
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Calculating 1/s with gauge/gravity duality
Kubo formula

Nijkl = — ul)lg}) % Im Gﬁ,kl(wvo)
with G 1) (w,0) = —i [ dt dx ™" 0(t) (T3 (t,x), Tra (0, 0)])
Gauge/gravity duality

perturb metric by 1, = h; and expand action to second order in v,
= effective action for massless scalar v,

. I (u,q) ) oL
Gl(g) = — lim —2—*~ thIl, = — o 9,
0= g M B X O
retarded correlator > infalling boundary conditions at horizon

MT model:

Obtained numerically (on numerically given background!) and also from membrane paradigm
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Calculating /s from membrane paradigm
Membrane paradigm [igbal, Liu '08]

generic transport coefficient of _,  geometric quantities evaluated at
boundary theory horizon

at the horizon

Ya(t, u,X) = g (v, X) where dv = dt — Juu du
— it

regularity in infalling coordinates implies I, o« 0;%,

shear viscosity

Ha (’U,h, Q)

fa(un) = iwtha (Un, q)

with I, (up, @) X iwth,

if Oune = 0 in limit of zero momenta and frequency — trivial RG flow to boundary
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n/s from membrane paradigm

Two shear viscosity components with trivial RG flow

(coinciding with numerical result from Kubo formula/absorption calculation)

o purely transverse 1)) = hj

S

nL:E

@ longitudinal v = h{

Yz (“ h ) S
g

= 9=z (up) - 4mH (up)

4nn/s

10

0.8

0.6

0.4

0.2

0.0
0

a/T

[AR, Dominik Steineder, PRL 2012]

Surprise: Violation of the conjectured viscosity bound!

unbounded: H — oo as

— 00,

but eventually breakdown of supergravity approximation (naked singularity at 7' = 0)

A. Rebhan
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Third shear viscosity component in bulk (only)

3rd shear viscosity ¢; = hZ

z z gzz(uh) SH(Uh,) S
= = > —_
Tee=1ML Gua(up) 47 4w

Reason for 3rd viscosity component, while axi-symmetry should allow only 2: Wilsonian energy-momentum

tensor away from the boundary is nonsymmetric! (cp. Adams, Balasubramanian, McGreevy JHEP 0811)

. 14}
Nontrivial flow towards boundary! . g
Mamo JHEP1210: analytic check to order a?; 0 .
Steineder (thesis 2012): to all orders numerically § ost ]
B f—
< o6} 2 /2 1
- 2 . — - (€. /2)n; s
Ou(ng) oca® = np =mng(u) sl ! Sl T ,
. s . 02}
— only 2 shear viscosities in o0 ‘
0.0 02 04 0.6 0.8 1.0

boundary theory
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Other deviations from universal KSS result

Prior:
@ higher derivative gravity!

e finite coupling corrections increase 7)/s Buchel et. al., Nucl. Phys. B707 (2005)
e but also higher derivative grav theories that violate the bound were found
Brigante et. al., Phys. Rev. D77 (2008); Kats, Petrov, JHEP 0901 (2009)
@ spatial anisotropy:
e non-commutative N' = 4 SYM plasma satisfies the bound
Landsteiner, Mas, JHEP 0707 (2007)|
o bottom-up model for anisotropic biwave superfluids gave non-universal shear

viscosity component above the bound Erdmenger et. al., Phys. Lett. B699 (2011); ..

Einstein gravity dual which vi

By now also:

e anisotropic top-down (Einstein) gravity dual of 5+1d field theory from NS5/F1
branes also violates the bound
Polchinski, Silverstein, Class. Quant. Grav. 29 (2012)
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Implications for QGP hydro simulations?

vo dominantly driven by 1, which respects KSS bound
but (insignificant) effect for rapidity dependence:

B. Schenke: MUSIC code (private communication)

Hydro simulations with ny, # 1, :

o PHOBOS v, 15-25% central —o—
1T mss) =0 —
(n/s), = 0.02 —
0.08 ||(0/s) = 0.04 — 1
(n/s), = 0.08
=
< 006t 1
3
K
0.04
0.02
-4 -2 0 2 4
"lp
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Jet quenching

Giataganas JHEP 1207; Chernicoff et. al. JHEP 1208; Rebhan, DS, JHEP 1208
momentum broadening Ap of a hard parton moving at angle 6 wrt z-axis
0 = 0: rotationally invariant broadening

0 # 0: dependence on directions orthogonal to parton trajectory
¢ =0...5: Ap measured orthogonal to ...in plane [ ]

0=2¢=0—q.,¢=2%— g, MT: always

bleam axis)

A. Rebhan
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Jet quenching

Qualitative differences:

JW model (e = const.) MT model (s = const.)

oblate

11.0

4,
Jos = prolate
1s0

Opposite trend in JW model for oblate plasma (more relevant for QGP)!
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More differences between JW and MT models

Spectral densities for photons
AR, Steineder JHEP 1108 (2011); Patino, Trancanelli, JHEP 1302 (2013)

0.7 s

0.6

0.5

3
=

JW model MT model

Stark differences, in particular for large momenta!
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More differences between JW and MT models

Heavy quark potentials Giataganas JHEP 1207; AR, Steineder, JHEP 1208

010 . . - - ——
s=const. ;
0051 - -
/ ]l
I A A
) 0.00 7 —
g g :
W o2 ] W _oosf
<]
g g
o4 1 -0.10}
-0.15}F A
-06 €=const.
0.2 03 04 05 06 0.7 -3 02 04 o‘./s 10
L L
JW model MT model

JW: quarks separated in z-direction have deeper (shallower) potential for oblate (prola
anisotropy in qualitative agreement with weak coupling (hard anisotropic loop) results

MT: always qualitatively like prolate JW
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Thermodynamics of MT model (infinite coupling)

Mateos, Trancanelli, JHEP 1107; Gynther, AR, Steineder, JHEP 1210
Instability against redistribution of homogeneous anisotropy “charge” density a
into inhomogeneous (lasagna) phase for 0 < a < as

(vaguely reminiscent of filamentation instability in weakly coupled anisotropic plasma)

T/ao
120

f 10r
—_ Homogeneous

—-_— Inhomogeneous / 08l
[
; a

0.6

0.4

0.2F /

00 T ‘ ‘ ‘
00 05 10 15 20 25

s/u/m: stable/unstable/metastable; O/P: oblate/prolate

a/ag
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Thermodynamics of MT model (zero. .. weak coupling)

Gynther, AR, Steineder, JHEP 1210

plasma of weakly (or non-) interacting vector bosons coupled to anisotropic
Chern-Simons charge

e anisotropic dispersion laws, but no unstable modes (unlike hard anisotropic loop
theory!)

e yet: even richer phase diagram with instabilities of homogeneous phase against
redistribution of anisotropy charge

T/ T/ao
101 12,
sP L
sl 10
08}
06
06}
04F
04}
02 02f
0.0 L a/ag
0.0 10

(9*Ne = )
s/u/m: stable/unstable/metastable; O/P: oblate/prolate
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Conclusion

@ Two interesting toy models for strongly coupled anisotropric SYM plasmas:
JW model: simple singular geometry with rather benign naked singularity
MT model: regular equilibrium geometry with anisotropy through linear axion

@ MT model leads to longitudinal shear viscosity 11,
below the KSS result universal to isotropic Einstein gravity duals!
(unfortunately elliptic flow rather insensitive to nr)
o Stark differences of heavy-ion physics observables in both models!
Jet quenching: only MT model same trend as expected from weak-coupling
plasma instabilities
Heavy quark potential: only JW model same trend as weak coupling results
@ Time-dependent nonequilibrium AdS with colliding shock waves could in
principle decide whether any of those are good toy models!
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