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Critical O(2) model in D=3 at large charge

I Let us review the

general idea .
I It’s that we write a conformally invariant effective field theory

that is weakly coupled in the limit where the charge density is
large compared to the infrared scale .

I In radial quantization when the total charge is large, the
lowest state with a given charge is always automatically in this
regime when the charge is much greater than one.
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I We then choose the

Wilsonian cutoff Λ to be (as always)
much larger than the infrared enegy scale but (importantly
but somewhat unconventionally) much smaller than the
inverse mean distance between charges ρ−

1
2 .

I In this limit both higher derivative operators in the effective
action, and quantum loop corrections to observables, are both
parametrically suppressed by powers of the density in the
denominator .

I Thus, operator dimensions and other properties of ground
states and other low-lying states of large J, are calculable
perturbatively in 1

J .
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complex scalar field of the O(2) model. The magnitude of the
complex scalar gets a mass proportional to the charge density
and can be integrated out, leaving us with an effective theory
for χ alone.
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Critical O(2) model in D=3 at large charge

I For general spatial geometries, the subleading corrections are
proportional to

J+ 1
2 times the Euler number of the spatial

slice.
I For a spatial slice with the topology of a torus T 2, the Euler

numer correction vanishes. If the torus is metrically flat , then
all curvature-dependent terms in the effective theory drop out
as well, and the theory becomes more universal to higher order
in J.

I This makes the torus geometry a good arena in which to
isolate the leading coefficient c+ 3

2
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Critical O(2) model in D=3 at large charge

I For a

flat square torus with circumference (not radius) ` , the
ground state energy E

(0)
J in the charge-J sector has the

expansion
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where KCasimir ≡ −0.718873 .
I The number Ktwo loop is a theory-independent coefficient

describing the conformal part of the two-loop vacuum energy
of the leading effective action. Despite being universal it is
nonetheless tricky to actually calculate, as it describes the
UV-finite part of a highly UV-divergent two-loop diagram in
finite volume. My collaborators and I have not calculated it
yet, and I don’t know if we ever will.
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Critical O(2) model in D=3 at large charge

I Despite our ignorance of the coefficient of the

J−
3
2 term in

the energy, we should expect that the spectrum of charged
ground states on the torus is a very useful setting for getting
reasonably precise numerical estimates of c 3

2
via Monte Carlo

methods.
I I will now transmit some not yet published results due to D.

Orlando and S. Reffert and their lattice colleagues.
Apparently it is not so easy to get the absolute additive
normalization of the energy of the ground state in the
finite-charge sector,but it is relatively easy to get the energy
differences between ground states in adjacent charge sectors.

I This is slightly unfortunate since these differences are
insensitive to the universal order O(J0) term, but we’re going
to focus on the glass being half-full here.
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sponsible for the accuracy of the leading-order formula.
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Also: The plot above is not "fit" with any low-J data at all. It is
simply fit choosing the c 3

2
coefficient so that the J = 15 data point

lies exactly on the curve.
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with error bars. )
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Large charge with vs. without a vacuum manifold

I In the case of the N = 2 superconformal fixed point, the
large-charge universality class is the

same as that of the O(2)
model .

I The only additional information contributed by
supersymmetry is the size of the gap of the massive
excitations above the effective χ theory .

I The mass of the fermions is exactly proportional (with a
specific coefficient ) to the chemical potential for χ-charge ,
which is bounded by the splitting between ∆J+1 and ∆J .

I The constraints of SUSY are weak because there is in general
no BPS scalar primary state at R -charge greater than 1

2 :
The chiral ring of the theory truncates and its only elements
are 1 and φ.
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I The

truncation of the chiral ring corresponds on general
grounds to the absence of a manifold of Poincare-invariant
vacua .

I This comes from an old observation due to Luty and Taylor .
I In general supersymmetric theories with four or more

supercharges , the holomorphic coordinate ring on the vacuum
manifold corresponds precisely to the radical of the ring of
BPS scalar primaries of the theory.

I The "radical" of a commutative ring is the ring modulo its
ideal of nilpotent elements .

I The chiral ring of the W = Φ3 model is purely nilpotent and
correspondingly it has no vacuum manifold .

I The latter property is pretty obvious from the fact there is a
potential for the only complex scalar field in the theory.
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I The case of a theory with an
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thermodynamic limit in flat space at zero temperature
because the Legendre transform between charge density and
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non-nilpotent chiral ring there is at least
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and therefore the dimension of the BPS operators receives no
corrections .
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Large charge with vs. without a vacuum manifold

I So it seems the scaling of the lowest state is actually kind of

boring.
I However we can still ask about things like the dimensions of

near-BPS states such as the second- and third-lowest
operators of a given large R-charge JR.

I There are also interesting questions about OPE coefficients
involving BPS and near-BPS operators of large R-charge .

I Some such questions can be more naturally reformulated as
questions about the norms of certain states. (This may sound
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I Our approach will
:::
not be to constrain high-dimension

operators directly with the conformal bootstrap.

I Rather, we will work in parallel with our approach in the
nonsupersymmetric case. That is, we will assume that the
CFT can be described by a Wilsonian fixed point with the
appropriate symmetires.

I By integrating out the heavy states on moduli space, we then
obtain an even simpler description in terms of a conformally
invariant effective action on a given branch of moduli space.

I That is, the X -branch is described at leading order in
derivatives by the unique conformally invariant Kahler
potential one can write down:

K = c[K ] |X †X |+
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where c[K ] is a coefficient that we do not know how to
calculate without knowing the full form of the Wilsonian
action at the fixed point .
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and similarly for the conjugate superfields.
I The Kahler potential then becomes the canonical one for Φ:

K = Φ†Φ .

I The only caveat here is the non-single-valuedness of the map
between X and the canonical field Φ. This will be mostly
innocuous and result mainly in a nontrivial quantization rule
for the number of Φ-excitations.
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the mass scale of the X -excitations, which are of order 1
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leading large-J approximation , the conformal
dimensions are calculable in free field theory.

I This is fine but it’s a little bit boring . Let us now investigate
what can be said about the subleading large-J corrections to
the operator spectrum.

I There are no possible conformal corrections to the form of the
Kahler potential. So, any corrections to the free spectrum
must come from higher derivative D-terms.

I These higher terms must be invariant under all symmetries of
the full CFT, including X -symmetry, R-symmetry, N = 2
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The XYZ Model

I Even Weyl symmetry alone is

remarkably constraining.
I The leading conformally invariant higher-derivative term for a
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The XYZ Model

I Integration over superspace is equivalent to acting with four
superderivatives and evaluating at θ = θ̄ = 0,

or equivalently,
evaluating at θ = θ̄ = 0, and acting with four supercharges.

I In components, the super-FTP term contains operators such
as (ψ̄∇ψ)2/|φ|6 and |∇φ|4/|φ|6 .
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The XYZ Model

I The naive

J-scaling of the term is J−1, since each field φ, φ̄
scales as J+ 1

2 .
I When expanded as vev and fluctuations, the term with k

fluctuations has J-scaling J−(1+ k
2 ).

I So the propagator correction has J-scaling J−2 . The cubic
and quartic vertices have J-scaling J−
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The

zero-fluctuation term and two-fluctuation term will turn out
not to contribute to the energies for reasons to do with
supersymmetry. We shall explain this point further.
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Energy shift in large-J perturbation theory

I The leading energy shift is given by the negative of the
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I The order O(J−1) term comes from the bosonic FTP term
evaluated in the classical solution.

I It vanishes.
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I The O(J−3) piece is given by a

two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.
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boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram

with a single quartic vertex and the topology of a figure eight.
I The diagram vanishes due to a nontrivial cancellation between

boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a

single quartic vertex and the topology of a figure eight.
I The diagram vanishes due to a nontrivial cancellation between

boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex

and the topology of a figure eight.
I The diagram vanishes due to a nontrivial cancellation between

boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the

topology of a figure eight.
I The diagram vanishes due to a nontrivial cancellation between

boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram

vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes

due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a

nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation

between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between

boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson

plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus

fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion

contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,

and boson-fermion contributions on the other hand.
I The figure-eight diagram is the only contribution at O(J−3);

the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and

boson-fermion contributions on the other hand.
I The figure-eight diagram is the only contribution at O(J−3);

the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion

contributions on the other hand.
I The figure-eight diagram is the only contribution at O(J−3);

the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The

figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight

diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the

only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only

contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at

O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);

the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two

cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices

is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order

O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



Energy shift in large-J perturbation theory

I The O(J−3) piece is given by a two-loop vacuum diagram
with a single quartic vertex and the topology of a figure eight.

I The diagram vanishes due to a nontrivial cancellation between
boson-boson plus fermion-fermion contributions on the one
hand,and boson-fermion contributions on the other hand.

I The figure-eight diagram is the only contribution at O(J−3);
the two-loop diagram with two cubic vertices is already down
at order O(J−5).



So the

correction to the dimension of the lowest state is zero up to
and including order O(J−3).



Energy shift in large-J perturbation theory

I These perturbative cancellations have a simple explanation in
terms of

supersymmetry; the lowest state is after all BPS and
corresponds to the operator X JX = X

3J
4 = φJ .

I BPS states obey a multipet-shortening condition and cannot
be lifted in perturbation theory .

I Therefore it was inevitable that the subleading large-J
corrections would have to vanish for the lowest state; we have
now seen this directly at leading nontrivial order in large-J
perturbation theory.
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I The

disconnected piece is literally the product of a free
two-point function times the sum of vacuum diagrams we
have discussed, up to and including the figure eight two-loop
diagram.

I The vacuum factor cancels nontrivially as we have already
seen, so the disconnected piece vanishes.

I The connected piece at order O(J−3) has the topology of a
one loop correction to a bosonic propagator with a single
quartic vertex.

I The internal loop has a bosonic and a fermionic contribution.
I These two contributions cancel nontrivially against one

another. Therefore the order O(J−3) correction to the
second- lowest state cancels as well.
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instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest

state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state,

there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a

superalgebraic explanation for the cancellation.
I At the free-field level, the second-lowest state is a scalar

primary with dimension ∆
(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation

for the cancellation.
I At the free-field level, the second-lowest state is a scalar

primary with dimension ∆
(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the

free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field

level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a

scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary

with dimension ∆
(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension

∆
(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.

I Thus it lies in a semi-short multiplet with only eleven Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.

I Thus it lies in a semi-short multiplet with only eleven Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a

semi-short multiplet with only eleven Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet

with only eleven Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only

eleven Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven

Q−
and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and

Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄−

descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants

instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual

fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen

. For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen .

For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its

Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2

-descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is

absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent

.



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Just as in the case of the lowest state, there is again a
superalgebraic explanation for the cancellation.

I At the free-field level, the second-lowest state is a scalar
primary with dimension ∆

(+1)
J = J

2 + 1.
I Thus it lies in a semi-short multiplet with only eleven Q−

and Q̄− descendants instead of the usual fifteen . For
instance, its Q̄2 -descendant is absent .



Energy shift in large-J perturbation theory

I Thus the

second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest

state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again

cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected

unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to

join into a long multiplet.
I There is no candidate for such a state. Any such state would

have to be a scalar state with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join

into a long multiplet.
I There is no candidate for such a state. Any such state would

have to be a scalar state with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a

long multiplet.
I There is no candidate for such a state. Any such state would

have to be a scalar state with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long

multiplet.
I There is no candidate for such a state. Any such state would

have to be a scalar state with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is

no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate

for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state.

Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a

scalar state with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state

with R-charge JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge

JR = J
2 + 2, with

φ-charge Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2,

with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge

Jφ = J and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J

and with energy ∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy

∆
(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2

.
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .

I The only state with the correct dimension and R-charge is the
state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct

dimension and R-charge is the
state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension

and R-charge is the
state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and

R-charge is the
state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge

is the
state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state

φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2

which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong

φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge,

and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be

BPS and could not have its energy lifted .
I So we have once more a super-algebraic explanation for the

vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS

and could not have its energy lifted .
I So we have once more a super-algebraic explanation for the

vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its

energy lifted .
I So we have once more a super-algebraic explanation for the

vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted

.
I So we have once more a super-algebraic explanation for the

vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a

super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic

explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the

subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J

correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension,

which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our

explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I Thus the second-lowest state again cannot have its energy
corrected unless it has another multiplet or multiplets with
which to join into a long multiplet.

I There is no candidate for such a state. Any such state would
have to be a scalar state with R-charge JR = J

2 + 2, with
φ-charge Jφ = J and with energy ∆

(candidate)
J = J

2 + 2 .
I The only state with the correct dimension and R-charge is the

state φJ+2 which has the wrong φ−charge, and at any rate
would be BPS and could not have its energy lifted .

I So we have once more a super-algebraic explanation for the
vanishing of the subldeading large-J correction to the operator
dimension, which agrees with our explcit diagrammatic
calculation.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice

confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence

in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our

large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J

methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods,

as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t

make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes

in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the

super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term

in components.
I On the other hand, this is getting a little bit boring having

everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in

components.
I On the other hand, this is getting a little bit boring having

everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit

boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring

having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything

vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish

. We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is

nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero

so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting

prediction for an operator dimension .
I So now we will look for the correction to the third-lowest state

with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction

for an operator dimension .
I So now we will look for the correction to the third-lowest state

with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an

operator dimension .
I So now we will look for the correction to the third-lowest state

with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension

.
I So now we will look for the correction to the third-lowest state

with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the

third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest

state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I This agreement is giving us some nice confidence in our
large-J methods, as well as confidence that we didn’t make
any coefficient mistakes in writing down the super-FTP term
in components.

I On the other hand, this is getting a little bit boring having
everything vanish . We’d really like to find a case where the
subleading large-J correction is nonzero so we can make some
sort of interesting prediction for an operator dimension .

I So now we will look for the correction to the third-lowest state
with the same quantum numbers.



Energy shift in large-J perturbation theory

I Once again, we the evaluate matrix element of the FTP term
in the state

|2; J + 2〉 ≡ 1√
2
√

(J+2)!
((a0

†)φ̄)2((a0
†)φ)J+2 |0〉

which we approximate by 1√
2

((a0
†)φ̄)2 |[J + 2]〉 and evaluate

the latter matrix element by time ordered perturbation theory
in a nontrivial vev .

I Again the matrix element breaks up into a sum of connected
and disconnected diagrams.

I The disconnected pieces contain factors proportional to the
two-loop correction to the lowest state,and to the one-loop
correction to the second-lowest state, both of which vanish.
So the only nonvanishing correction comes from the
connected tree-level diagram with a single quartic vertex.
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dimension is not constrained super-algebraically.

I Let us now be careful about the normalization and sign of this
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Energy shift in large-J perturbation theory

I With

this normalization for the FTP term, the shift in energy
of the third-lowest scalar primary is

δ∆
(+2)
J = −12 r κFTP

π |φ0|6
.

I Using J = 4πr |φ0|2 we have

δ∆
(+2)
J = −192π2 κFTP
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Energy shift in large-J perturbation theory

I One can

also calculate the energy shifts of the Q̄ -descendants
of the state, and check that they are the same.

I At the free level the unperturbed states are of the form
φJ+2φ̄ψ̄ and φJ+2ψ̄2.

I Their energy shifts are given by expectation values of the TPP
operator in the appropriate states, and computed by tree level
diagrams with a quartic vertex with two and four fermionic
lines, respectively.
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do indeed come out to the same value for all
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I A few comments on the FTP coefficient:

I The coefficient κFTP is a "non-universal" coefficient in the
effective action , that we don’t know how to compute.

I It would of course be VERY interesting to know how to solve
for this term by bootstrap or at least bound it in some range.
At present we do not know how to do even that.

I However we can bound the FTP coefficient below at zero by a
non-bootstrap arguement due to Arkani-Hamed, Rattazzi,
Dubovsky, Nicolis, and Adams.

I If we examine the purely bosonic component of the FTP term
in flat space, we find that it is equal to

L(flat, bosonic)
FTP = +4κFTP

|∂φ|4

|φ|6
.

Arkani-Hamed et al. have pointed out that the coefficient of
this term must always be positive in a consistent effective field
theory. A negative coefficient would lead to violations of
unitarity in low-energy moduli scattering, as well as
superluminal propagation in backgrounds where a scalar
gradient gets an expectation value.
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Energy shift in large-J perturbation theory

I The coefficient κFTP

enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the

O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the

O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)

energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift

of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the

first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary

with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a

negative sign.
I So we know the coefficient of this term is negative definite by

some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the

coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term

is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is

negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite

by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is

entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure

from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the

underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT

.



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I The coefficient κFTP enters the formula for the O(J−3)
energy shift of the first unprotected scalar primary with a
negative sign.

I So we know the coefficient of this term is negative definite by
some consistency condition that is entirely obscure from the
point of view of the underlying CFT .



Energy shift in large-J perturbation theory

I We note that the

large-charge expansion of this operator
dimension is entirely formally parallel to the large-spin
expansion of the dimensions of the primaries appearing in the
OPE of two scalar primaries. (Komargodsky-Zhiboedov and
Kaplan-Fitzpatrick-Poland-(Simmons-Duffin).)

I The large-spin expansion takes the form

∆s = s + 2δ0 −
(#)
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where the number # is positive and τ is the lowest twist
exchanged in the cross-channel.

I The structure is entirely parallel with our own:
I The leading term is linear in the large quantum number with a

particular coefficient corresponding to the slope defined by the
unitarity bound.

I The second term is independent of the spin and depends on
the details of the operators.

I The third term scales as a specific negative power of the
quantum number, with a coefficient of negative definite sign.
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three-point functions are calaulable as well when two or three
of the operators have large J.

I (You can’t have just one operator carry large J, because
charge conservation .)

I As long as at least two of the operators have large J, you can
treat these as initial and final states, and then you can
evaluate the third operator in the moduli space effective
theory.
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I And defined the norm of the state X JX to be

NC ≡
√
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XC (σ)X̄C (0)
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I Then by taking σB → σA we can relate the three point

functions directly to the two-point functions:
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I So the

chiral-chiral-antichiral three-point function depends
only on the two-point function of the antichiral scalar and its
conjugate.

I This is a useful fact because the two-point functions at large
J can be estimated easily in the effective field theory on
moduli space.

I Computing the two-point function amounts to calculating the
partition function with δ-function sources proportional to
JX ln(X ) and JX ln(X̄ ) .

I If we separate the points by a unit distance σ then we can
compute the two-point function in the X -branch effective
theory with Wilsonian cutoff Λ such that

|σ|−1 << Λ << J
1
2
σ .

I If desired, we can even smear the sources over a scale
|σ|−1 << `source << Λ, though this will not affect the
leading result but only serve to bound the corrections.
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Two- and three-point functions

I At leading order the

log if the partition function with fources
is the negative of the minimum of the action with sources
S [JX ] = SCFT + Ssources.

I After changing to the more convenient Φ-variables, the terms
in the action take the form

SCFT = |∇φ|2 + (fermions) + SFTP + higher order in
1
J
,

Ssources = −J ln(φ(σφ)/
√
c[K ])− J ln(φ̄(σφ̄)/

√
c[K ])

where J ≡ 4
3JX as before.

I At leading order this is simply the free-field two-point function
N 2

J = Z ∼ c−J[K ]

〈
φJ φ̄J

〉
= J! c−J[K ]

〈
φφ̄
〉J which is generated

by the (complex) classical solution
φ = q

|σ−σφ̄|
, φ̄ = q

|σ−σφ| , q ≡
√

J
4π|σφ−σφ̄|

.
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correction comes from inserting the FTP term into
the classical action, which leads to a large-J correction of the
form
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I The same coefficient controlling the leading energy shifts also
controls the leading shifts of the norms and thus of the
three-point functions of chiral primaries.

I There are similar results for three-point functions involving
two BPS operators and one semi-short scalar primary. These
use the fact that the scalar semi-shorts form a module over
the chiral ring.
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