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Aims and Motivation

General Setup and Questions:

dimensional reduction of higher-dimensional gauge theories on coset spaces:
Yang-Mills theory on Md × G/H → Yang-Mills-Higgs theory on Md

coset G/H chosen with special geometric properties,
here: Sasaki-Einstein and 3-Sasakian manifolds

systematic restrictions from imposing G -equivariance on gauge connection
→ fixes form of gauge connection, graphical encoding of the theory in terms

of quiver diagrams

study of gauge theories by (generalized) instantons

Hermitian Yang-Mills (HYM) instantons on metric cones C (G/H) and their
moduli spaces

=⇒ study and characterize the gauge connection

In this talk: quiver gauge theory on G/H = T 1,1 (5-dim.) and X1,1 (7-dim.).
(JG, Lechtenfeld, Popov, Szabo [arXiv:1601.05719]);(JG [arXiv:1605.03521].)

Sasakian quiver gauge theory as analogue of that for Kähler manifolds
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Equivariant dimensional reduction

Quivers and respresentations

”Quiver = directed graph”

Formal: A quiver Q = (Q0,Q1) consists of vertices ∈ Q0 and arrows ∈ Q1, and the
maps t, h : Q1 → Q0 denote the starting (tail) and ending (head) point to a given arrow.

A relation on the quiver is a formal sum of arrows.

A quiver representation is given by assigning a vector spaces Vi to each vertex vi ∈ Q0

and a linear map ∈ Hom (Vi ,Vj) to each arrow from vi to vj . see e.g.(Derksen, Weyman 2005)

Therefore, quivers are a very useful tool for representations of algebras and applications
from category theory.

Well-known applications: quiver varieties (Nakajima) and quiver gauge theory of a stack of
D-branes.

Here: use quiver diagrams as diagrammatic tool for characterizing the form of the
gauge connection caused by equivariance
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Equivariant dimensional reduction

Equivariant vector bundles and quiver diagrams

Basic Ideas: (Alvarez-Cónsul, Garćıa-Prada 2003), for review see e.g. (Dolan, Szabo 2010)

Consider a Hermitian vector bundle π : E −→ Md × G/H of rank k (⇒ structure group
U(k)) with trivial G -action on Md .

E is G-equivariant if the following diagram commutes

Md × G/H Md × G/H

E E

G y

G y

π π

By induction E = G ×H E : G -equiv. bdls. E → Md × G/H
1:1←→ H-equiv. bdls.

E → Md .

This requires a representation of H on fibres Ex ' Ck . Assume that it stems from irred.
G -representation D|H =

⊕
j ρj , which yields isotopical decomposition Ex =

⊕
j Ej and

a breaking of the structure group U(k)→
∏

j U(kj).

Quiver diagram: depict ρj ’s as vertices and maps ∈ Hom
(
Ci ,Cj

)
given by G -action as

arrow between vertices i and j (→ representation of quiver).
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Equivariant dimensional reduction

Equivariant vector bundles: construction and examples

Construction procedure of the quiver diagram:

1 Choose an irreducible G -representation D.

2 Construct the weight diagram.

3 ”Collapse” it along generators of subalgebra h.

Consequence: If h is a Cartan subalgebra, then the quiver diagram coincides with
weight diagram.

Example 1: Kähler manifold CP1 ' SU(2)/U(1): Am+1-Quiver
e.g. (Alvarez-Cónsul, Garćıa-Prada 2001), (Popov, Szabo 2006)

Representation of H inside G is then given by the generator

I3 = diag
(
m 1km , (m − 2) 1km−1 . . . ,−m 1k0

)
on Ck =

(
Ckm ,Ckm−1 . . . ,Ck0

)T
. (1)

Equivariance condition yields quiver diagram (”holomorphic chain”) and gauge
connection of the form

A =



1km ⊗ am φm−1 ⊗ Θ 0 . . .

−φ†m−1 ⊗ Θ 1km−1
⊗ am−1 φm−2 ⊗ Θ . . .

0 −φ†m−2 ⊗ Θ
. . . . . .

.

.

.

.

.

.

.

.

.


with 1-forms al ,Θ ∈ su(2)∗, homomorphisms φl(x)

•
(0)

•
(1)

. . . •
(m− 1)

•
(m)

Jakob Geipel (LUH) Sasakian Quiver Gauge Theories Tokyo 02/12/16 6 / 24



Equivariant dimensional reduction

Equivariant vector bundles: examples (2)

Example 2: Kähler manifold CP1 × CP1 :
Am1+1 ⊗ Am2+1-Quiver
(Lechtenfeld, Popov, Szabo 2008)

→ yields a grading of the connection A
• • . . .

• • . . .

...
...

Further examples: Kähler manifolds CP2 = SU(3)/S (U(2)×U(1)) and
Q3 = SU(3)/ (U(1)×U(1)): (Lechtenfeld, Popov, Szabo 2008)

Q3

CP2

• •

•

•

•

• •

•

•

•

•

•

•

•

• •

•• •

••

•

• •

•
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Generalized instantons

Reminder: (classical) instantons on M4

Consider Yang-Mills (YM) theory on four-dimensional manifold with gauge field A ,
curvature F = dA+A ∧A and action

SYM ∝
∫
M4

Tr (F ∧ ?4F) . (2)

This yields the Yang-Mills equation

D ?4 F = 0. (3)

Hodge star ?4 decomposes in two-forms ±1-eigenspaces. Consider (anti-)self-dual
connections (”instantons”),

?4F = ±F (4)

→ First-order condition yields solutions to second-order Yang-Mills equations due to
Bianchi identity.

The action is bounded by the topological invariant (1st Pontryagin class)∫
M4

Tr (F ∧ F) ∝ p1 ∈ Z. (5)

Self-dual connections are important for the characterization of four-manifolds. (Atiyah,

Hitchin, Singer)
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Generalized instantons

Generalized instantons: definition

Let A be a connection on an d-dimensional (Riemannian) manifold Md and consider
now the (generalized) instanton equation (Ward 1984), (Hull 1998), (Harland, Nölle 2012), . . .

?dF = − (?dQ) ∧ F . (6)

This implies

d ? F + A ∧ ?F − (−1)d ? F ∧ A︸ ︷︷ ︸
YM eq.

+ (d ? Q) ∧ F︸ ︷︷ ︸
torsion

= 0. (7)

=⇒ YM equation (+torsion term) again follows from first-order equation.

The four-form Q depends on the chosen geometry, and the torsion term vanishes not
only for special holonomy manifolds, but also for manifolds with real Killing spinors,
∇Xψ = αX · ψ.

Harland and Nölle give formula for those Q and define an instanton solution, called
canonical connection, based on the geometry.

This definition implies another notation of instanton as

F · ε = 0 (8)

as gaugino equation in heterotic supergravity. =⇒ start from instanton solutions to
construct full heterotic solutions.

Jakob Geipel (LUH) Sasakian Quiver Gauge Theories Tokyo 02/12/16 9 / 24



Generalized instantons

Construction of instantons see (Ivanova, Popov 2012)

Consider a reductive homogeneous with generators Iµ,

g = h⊕m =: span〈Ij〉 ⊕ span〈Ia〉. (9)

Given an instanton connection (e.g. the characteristic one) Γ = Γj Ij , one studies
connections of the form A = Γj Ij + Xµe

µ whose curvature is

FA = FΓ +
1

2
Γj ∧ eµ

(
[Ij , Xµ]− f νjµXν

)
+

1

2
eµν

(
[Xµ, Xν ] + TσµνXσ

)
+ dXµ ∧ e

µ
. (10)

One imposes a condition on the e µν-part and the vanishing of the second term,

[Ij ,Xa] = f bjaXb equivariance condition. (11)

The equivariance condition can also be motivated from differential geometry as
invariance condition for a connection on a homogeneous space. (Kobayashi, Nomizu)

This condition is exactly that of equivariance for the vector bundles above. Quiver
gauge theory, by choosing different representations and depicting the homomorphisms
as arrows, allows a refinement of the typical ansatz (Harland, Nölle, Haupt, . . . )

Xj = λj (x) Ij . (12)
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Generalized instantons

Generalized instantons: overview

Geometric structures with Killing spinors one can consider for instantons: (huge number of

articles . . .)

nearly-Kähler manifolds: SU(3) structure, examples: S6, S3 × S3, SU(3)/U(1)2,
Sp(2)/Sp(1)×U(1)

nearly-parallel G2 manifolds: G2 structure, examples:
Aloff-Wallach spaces Xk,l = SU(3)/U(1)k,l , squashed S7 = Sp(2)/Sp(1), . . .

Sasaki-Einstein manifolds: SU(n) structures, examples:
S2n+1 = SU(n + 1)/SU(n), Stiefel manifolds V (Rn+1) = SO(n + 1)/SO(n − 1),
SO(2n)/SU(n), Q(1, 1, 1), . . .

3-Sasakian manifolds: Sp(n) structures, examples: S4n+3 = Sp(n + 1)/Sp(1),
G2/Sp(1), X1,1, . . .

Recall that real Killing spinors on
(
Md , g

)
lift to parallel spinors on the metric cone

C
(
Md
)

=
(
R+ ×M, g̃ = r 2g + dr 2

)
(used in Bär’s classification). Thus, the cones

have special holonomy and one can study instantons also on the metric cones. (Ivanova,

Popov 2012)

Moreover, one can also consider instantons on cones with singularities, sine-cones.
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Sasakian quiver gauge theories

Sasakian quiver gauge theories

Study of equivariant dimensional reduction and instantons on cosets G/H with
Sasaki-Einstein structure.

Motivation:

odd-dimensional counterpart of quiver gauge theories on Kähler (Einstein-) spaces

interesting due to prominent role in AdS/CFT correspondence

Examples in the literature:

quiver gauge theory on S3/Γ ∼= SU(2)/Γ (Lechtenfeld, Popov, Szabo 2014)

quiver gauge theory on S5/Γ ∼= (SU(3)/SU(2)) /Γ (Lechtenfeld, Popov, Sperling, Szabo 2015)

First example here: T 1,1
(J.G., Lechtenfeld, Popov, Szabo 2016)

Spaces T p,q
(Romans 1985) are a class of U(1) bundles over S2 × S2,

T p,q =
SU(2)× SU(2)

U(1)p,q
with U(1)p,q = 〈pI (1)

3 − qI
(2)
3 〉. (13)

Compactification on AdS5 × T 1,1 is dual to N = 1 SCFT (Klebanov, Witten 1998)

(AdS5 × S5 dual to N = 4 SYM).

The metric cone over T 1,1 is a Calabi-Yau 3-fold known as conifold in the literature.
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Equivariance condition on T 1,1

Geometry: As Sasaki-Einstein 5-manifold, T 1,1 can be described as SU(2) structure
with (Conti, Salamon 2007)

η = −e5, ω1 = e23 + e14, ω2 = e31 + e24, and ω3 = e12 + e34 (14)

satisfying

dη = 2ω3, dω1 = −3η ∧ ω2, and dω2 = 3η ∧ ω1, (15)

where η ←→ U(1)⊥1,1 is the contact form and ω3 is the Kähler form on S2 × S2. The
Ricci tensor is Ricg = 4g with metric g = δije

i ⊗ e j .

Equivariant gauge connection: The canonical connection is Γ = I6 ⊗ a with
I6 = I

(1)
3 − I

(2)
3 (and a the dual 1-form). Its curvature FΓ ∝ e12 − e34 satisfies the

instanton equation

?FΓ = − (?Q) ∧ FΓ (16)

with Q = e1234. The connection Γ takes values in h = 〈I6〉. We consider now
connections on Md × T 1,1 written as

A = A + Γ +
5∑

i=1

Xi ⊗ e i , (17)

where A is a gauge connection on Md and Xi (x) homomorphisms (”Higgs fields”).
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Equivariance conditiond and quiver diagrams on T 1,1

This approach yields the equivariance conditions

[I6, φ
(1)] = 2φ(1), [I6, φ

(2)] = −2φ(2), [I6, ψ] = 0. (18)

(with φ(1) = 1/2(X1 + i X2), φ(2) = 1/2(X3 + i X4) and ψ = X5).

weaker conditions than those of CP1 × CP1 ⇒ more arrows and ”degeneracies”

additional endomorphism ψ due to the U(1)-factor (compared with Kähler case)

Quiver diagrams: denote by (m1,m2) the irreducible representation of SU(2)× SU(2)
on Cm1+1 ⊗ Cm2+1, U(1)-charge by cj,α = 2(j − α).

Example 1: (m1,m2) = (m, 0) yields ”modified holomorphic chain”

•
(0)

•
(1)

. . . •
(m− 1)

•
(m)

Example 2: representation (1, 1)

•(0, 0) • (1, 0)

• •(0, 1) (1, 1)

A =


a001k00

+ Ψ00 −Φ
†
00,01 Φ10,00 Ψ11,00

Φ00,01 a011k01
+ Ψ01 0 Φ11,01

−Φ
†
10,00 0 a101k10

+ Ψ10 −Φ
†
10,11

−Ψ
†
11,00 −Φ

†
11,01 Φ10,11 a111k11

+ Ψ11


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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Quiver diagrams on T 1,1 (2)

Representation (2, 1):

•
(0, 0)

•
(0, 1)

•(1, 1)

•
(2, 1)

•(2, 0)•
(1, 0)

Since the quiver diagram of T 1,1 depends only on one quantum number, cj,α, it is
reasonable to combine vertices with the same U(1)1,1 charge (i.e. identify vertices along
red arrows).

⇒ (m1,m2) yields modified holomorphic chain of length (m1 + m2 + 1).

One recovers CP1 × CP1-result by fixing X5 ∝ I5 and imposing equivariance also w.r.t.
second Cartan generator I5

[I
(1)
3 + I

(2)
3 , φ(1)] = 2φ(1) and [I

(1)
3 + I

(2)
3 , φ(2)] = 2φ(2). (19)
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Hermitian Yang-Mills equations

The constructed equivariant gauge connection yields a Yang-Mills theory on Md × T 1,1

and, since the Higgs fields do not depend on T 1,1, one obtains the dimensional reduction
to a Yang-Mills-Higgs theory on Md :

LYM = −
1

2

√
ĝ trk×k

 1

2
FabF

ab +
5∑
µ=1

(DaXµ)(DaXµ) + ([X1, X3])2 + ([X1, X4])2

+ ([X2, X3])2 + ([X2, X4])2 + ([X1, X2]− 2X5 +
3

2
i I6)2 + ([X3, X4]− 2X5 −

3

2
i I6)2 (20)

+ ([X1, X5] +
3

2
X2)2 + ([X2, X5]−

3

2
X1)2 + ([X3, X5] +

3

2
X4)2 + ([X4, X5]−

3

2
X3)2

]
.

Instanton solutions: We consider now the metric cone R+ × T 1,1. The canonical
connection Γ of T 1,1 lifts to an instanton on the cone (or, equivalently, the cylinder) and
one obtains the same equivariance conditions.

Since the cone is a Calabi-Yau manifold with Kähler form Ω, one can use the Hermitian
Yang-Mills equations (HYM) (also known as Donaldson-Uhlenbeck-Yau equations)
(Donaldson 1985), (Uhlenbeck, Yau 1986)

F (2,0) = 0 = F (0,2) and Ω F = 0 (21)

to evaluate the instanton equation. (Popov 2009)
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Hermitian Yang-Mills and Nahm’s equations

For the conifold, firstly, this yields the constraint

[φ(1), φ(2)] = 0 ⇒ commutativity of diagram (22)

Thus, one has to impose a relation on the quiver diagram. Secondly, one obtains the
equations

(with τ = ln r , s = 1/4 e−4τ , φ(i) = e−3/2τZi for i = 1, 2 and φ(3) = e−4τZ3)

d

ds
Za = 2[Za,Z3] for a = 1, 2 (”complex equations”) (23)

d

ds

(
Z3 + Z †3

)
= 2 (−s)−5/4

(
[Z1,Z

†
1 ] + [Z2,Z

†
2 ]
)
− 2[Z3,Z

†
3 ] (”real equation”)

similar to the (original) Nahm equations on C2
(see e.g. Kronheimer 1984)

dβ

ds
= 2[β, α] and

d

ds

(
α + α†

)
= −2[α, α†]− 2[β, β†] (24)

⇒ Techniques (moment maps, Kähler quotients, adjoint orbits) from the
discussion of the original Nahm equations are applicable. (Donaldson 1984),(Kronheimer 1990)
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Description of moduli space see (Donaldson 1984),(Kronheimer 1990), (Sperling 2015)

The form of these HYM equations for connections based on the canonical connection of
a Sasaki-Einstein manifold depends only on its dimension (which determines scaling and
number of fields) and allows a general description. (Popov, Ivanova 2012),(Sperling 2015)

Denote moduli space of complex equations as A1,1; it is it is invariant under the gauge
transformation

Za 7→ gZag
−1 for a = 1, 2 and Z3 7→ gZ3g

−1 +
1

2

dg

ds
g−1, (25)

for g(s) ∈ G ⊂ GL(C, k) such that constraints (equivariance conditions) are satisfied.
The real equation can be considered as moment map µ : A1,1 → Lie (G)

µ(Z ,Z †) =
d

ds

(
Z + Z †

)
− 2 (−s)(−5/4)

(
[Z1,Z

†
1 ] + [Z2,Z

†
2 ]
)

+ 2[Z3,Z
†
3 ], (26)

and, thus, the moduli space M as Kähler quotient

M = µ−1 (0) /G (27)

Recall: Original Nahm equations admit hyper-Kähler structure.
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Sasakian quiver gauge theories Quiver gauge theory on T 1,1

Description of moduli space (2) see (Donaldson 1984),(Kronheimer 1990), (Sperling 2015)

Apply gauge transformation such that

Za = g−1Uag for a = 1, 2 and Z3 = −1

2
g−1 dg

ds
(28)

with constant matrices U1 and U2. Any matrices with [U1,U2] = 0 solve the complex
equations in that gauge.

The real equation can be interpreted as equation of motion of a suitable Lagrangian.

Imposing the boundary conditions

lim
s→∞

Zµ (s) = g0Tµg
−1
0 (29)

uniquely determines the solutions.

Thus, the moduli space of framed HYM instantons can be also described as adjoint orbit

M = M (Tµ) (30)

of constant matrices at the boundary s →∞
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Sasakian quiver gauge theories Quiver gauge theory on X1,1

Quiver gauge theory on the Aloff-Wallach space X1,1

As second example of a quiver gauge theories, we study the Aloff-Wallach space X1,1

These spaces are defined as (Aloff, Wallach 1975)

Xk,l =
SU(3)

U(1)k,l
with U(1)k,l 3 h =

(
e i (k+l), e− i l , e− i k

)
. (31)

and admit G2 structures. (instantons on these spaces studied e.g. by Haupt)

The space X1,1 admits a Sasaki-Einstein and even a 3-Sasaki structure, which is an
SO(3) bundle over the quaternionic space CP2. The structure is described by

de1 =
√

3 e
82 − e72 − e35 − e46

, de2 = −
√

3e81 + e71 − e36 + e45

de3 = −
√

3 e
84 − e74 + e15 + e26

, de4 =
√

3e83 + e73 − e16 − e25

de5 = 2e67 − 2e13 + e24
, de6 = 2e75 − 2e14 − 2e23

de7 = 2e56 + 2e12 + e34
. (32)

This can be either seen as Sasaki-Einstein structure with contact form η = e7 or as
3-Sasaki-structure, i.e.

dηα = εαβγη
βγ + 2ωα dωα = 2εαβγη

β ∧ ωγ (33)

with ηα = e5, e6, e7. On the metric cone one has the Kähler form and the closed
top-degree form (making it Calabi-Yau) as well as additionally another closed form
(implying hyper-Kähler).
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Sasakian quiver gauge theories Quiver gauge theory on X1,1

Equivariance condition on X1,1

We consider the connection Γ = I8 ⊗ e 8 (with I8 the U(1)1,1 generator), whose
curvature FΓ ∝ −e12 + e34 satisfies the Sasaki-Einstein instanton equation with
Q = e1234 + e1256 + e3456.

The connection A = A + Γ + φ(α) ⊗ θ(ᾱ) + c.c + X7 ⊗ e 7 requires the equivariance
conditions (Haupt, Ivanova, Lechtenfeld, Popov 2011)

[Î8, φ
(1)] = 3φ(1), [Î8, φ

(2)] = −3φ(2), and [Î8, φ
(3)] = 0 = [Î8,X7]. (34)

and yields

•
(p− 3m)

•
(p− 3m + 3)

. . . •
(p− 3)

•
(p)

(35)

Xae
a =



Ψp Φp−3 0 . . . 0

−Φ
†
p−3 Ψp−3 Φp−6 . . .

.

.

.

0 −Φ
†
p−6

. . .
. . . 0

.

.

.

.

.

.
. . . Ψp−3 Φp−3m

0 . . . 0 −Φ
†
p−3m Ψp−3m

 , (36)
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Sasakian quiver gauge theories Quiver gauge theory on X1,1

Quiver diagrams on X1,1

Fundamental representation:

•(0, 2)

•(1,−1) •

• (2)

• (−1)
projection

projection

(37)

The other representations are modified holomorphic chains as well. As for T 1,1 and
CP2 × CP2, the reduction to the underlying Kähler manifold Q3 is done by setting
X7 ∝ I7.

Instantons on the metric cone: HYM equation leads to

[W1,W2] = 2W3, [W1,W3] = 0 = [W2,W3] (38)

Wj

ds
= 2[Wj ,Z ] j = 1, 2, 3 and 0 = µ :=

(Z + Z †)

ds
+ 2λj(s)[Wj ,W

†
j ] + [Z ,Z †].

with (φ1,2 = e−τW1,2), φ3 = e−2τW3, X7 = e−6τZ , s = −1/6 e−6τ, τ = ln(r).
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Sasakian quiver gauge theories Quiver gauge theory on X1,1

Instantons on metric cone over X1,1

Equations have similar form as for the five-dimensional examples and allow similar
techniques for discussion. However, the scaling coefficients λj(s) and also the
commutation relations differ from the uniform, symmetric behavior of all fields!

Reason: The connection Γ = I8 ⊗ e8, valued in h, we started with is a
Sasaki-Einstein instanton, but not the characteric connection of the
Sasaki-Einstein structure. Rather, it is the characteristic connection of the
3-Sasakian geometry. The corresponding instanton equation uses

Q3S = e1234 in contrast to QSE = e1234 + e1256 + e3456 (39)

for the instanton curvature FΓ ∝ −e12 + e34.

=⇒ Current/future work: Compare the quiver gauge theories arising from the
rich

geometric structures of 3-Sasakian coset spaces.
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Summary

Summary and Outlook

Imposing G -equivariance on vector bundles over coset spaces yields systemactic
restrictions of the gauge connection which can be depicted as quiver diagrams.

The underlying condition of equivariance naturally occurs when constructing
generalized instantons on homogeneous spaces.

The endomorphisms encoded in the quivers allow more general studies of
instantons than the usual approach, setting Xa = fa (x) Ia.

Sasakian quiver gauge theory is the odd-dimensional counterpart of that on Kähler
manifolds. The main features are the weaker equivariance conditions and the loop
caused by the additional U(1).

We discussed the Hermitian Yang-Mills equation and techniques for the description
of the instanton moduli spaces on the metric cone.

Current/future work: compare Sasakian and 3-Sasakian cases and construct
explicit solutions.

Thank you for your attention!
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