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Painlevé equations

Aiming to obtain new special functions, P. Painlevé classified 2nd order
nonlinear ordinary differential equations

R

(
z ,w(z),

dw(z)

dz
,
d2w(z)

dz2

)
= 0

whose movable singular points are pole only and obtained new six
equations in 1900, which are called Painlevé equations.
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Weierstrass elliptic function

Replacing z of PI

w ′′ = 6w2 + z

with −g2/2 ∈ C, we obtain a second-order differential equation

w ′′ = 6w2 − 1

2
g2, (1.1)

which is derived by differentiating the differential equation

(w ′)
2
= 4w3 − g2w − g3.

Hence, Weierstrass ℘(z) function is a solution to (1.1). Weierstrass σ(z)
function is defined by

℘(z) = −(log σ(z))′′.
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PI and its tau function

The first Painlevé equation is

w ′′ = 6w2 + z .

For any solution λ(z), we define τ(z) by

λ(z) = −(log τ(z))′′.

PI is a Hamiltonian system with

H =
1

2
µ2 − 2λ3 − zλ (µ =

dλ

dz
).

Note that H = (log τ)′. H satisfies

d3H

dz3
+ 6

(
dH

dz

)2

+ z = 0.
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Degeneration scheme
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Explicit series expansion of τVI(t)

In 2012, Gamayun, Iorgov and Lisovyy conjectured an expansion formula
PVI tau function in terms of regular conformal blocks:

τVI(t) =
∑
n∈Z

snC

(
θ1, θt

θ∞, σ + n, θ0

)
F
(

θ1, θt
θ∞, σ + n, θ0

; t

)
,

where s, σ ∈ C, F(θ, σ; t) = tσ
2−θ2

t−θ2
0 (1 + O(t)) is the 4-pt Virasoro

conformal block with c = 1, and

C (θ, σ) =

∏
ϵ,ϵ′=± G (1 + θt + ϵθ0 + ϵ′σ)G (1 + θ1 + ϵθ∞ + ϵ′σ)∏

ϵ=± G (1 + 2ϵσ)
,

where G (z) is the Barnes G-function such that G (z + 1) = Γ(z)G (z).
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Degeneration

Series expansions of the tau functions at t = 0, namely a regular singular
point of the first line of the following degeneration scheme

PVI

(0, 1,∞)
PV

(0,∞)
PIII

(0,∞)
PD7

III

(0,∞)
PD8

III

(0,∞)

PIV

(∞)
PII

(∞)
PI

(∞)

- -

@
@
@
@R

-

@
@
@
@R

-

@
@
@
@R

- -

were obtained in [Gamayun, Iorgov, Lisovyy, 2013] by taking the scaling
limits. Irregular conformal blocks used in these series expansions are
obtained by certain confluence limits from the four point conformal block
and all explicit.
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It had been known that

irregular conformal blocks as degenerations of (regular) conformal
blocks or pairings of irregular vectors. [Gaiotto, 2009]

(intertwining) commutation relations between Virasoro algebra and
vertex operators, in other words, operator product expansions(OPE).

special cases by free field realizations, for example, a rank r vertex
operator realized by the free field φ(z): [N-Sun, 2010]

Φ[r ](z) =: exp

(
r∑

n=0

λn
dnφ(z)

dzn

)
: .

Another approach

Provide irregular versions of vertex operator directly, then define irregular
conformal blocks as expectation values of new vertex operators.
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Module

For r ∈ Z≥1, define a module M
[r ]
Λ as a representation of Vir with

irregular vector |Λ⟩ such that

Ln|Λ⟩ = Λn|Λ⟩ (n = r , r + 1, . . . , 2r),

with Λ = (Λr , . . . ,Λ2r ) and M
[r ]
Λ is spanned by linearly independent

vectors of the form

Li1 · · · Lik |Λ⟩ (i1 ≤ · · · ≤ ik < r).
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Vertex operator

Define a vertex operator

Φ∆
Λ′,Λ(z) : M

[r ]
Λ → M

[r ]
Λ′

by

[Ln,Φ
∆
Λ′,Λ(z)] = zn

(
z
d

dz
+ (n + 1)∆

)
Φ∆

Λ′,Λ(z),

Φ∆
Λ′,Λ(z)|Λ⟩ = zα exp

(
r∑

n=1

βn

zn

) ∞∑
n=0

vnz
n,

where α, βn ∈ C, vn ∈ M
[r ]
Λ′ and v0 = |Λ′⟩.
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Theorem (N, 2015)

If Λ2r ̸= 0, then the vertex operator Φ∆
Λ′,Λ(z): M

[r ]
Λ → M

[r ]
Λ′ exists and is

uniquely determined by the given parameters Λ, ∆, βr with
α = −(r + 1)∆ + α̃(βr ,Λ), βn = βn(βr ,Λ) (n = 1, . . . , r − 1) and

Λ′
n = Λn − δn,r rβr (n = r , . . . , 2r).

Moreover, the coefficients vn are polynomials of Λ, βr , ∆ and Λ−1
2r .

We remark that M
[r ]
Λ is irreducible if and only if Λ2r−1 ̸= 0 or Λ2r ̸= 0

[Lu, Guo and Zhao, 2011], [Felińska, Jaskólski and Kosztolowicz, 2012].
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Pairing

A bilinear pairing ⟨·⟩: M∗
∆ ×M

[1]
Λ → C is uniquely defined by

⟨∆| · |Λ⟩ = 1,

⟨u|Ln · |v⟩ = ⟨u| · Ln|v⟩ ≡ ⟨u|Ln|v⟩,

where ⟨u| ∈ M∗
∆, |v⟩ ∈ M

[1]
Λ .

Because, Ln for n > 0 acts on |Λ⟩ diagonally and Ln for n ≤ 0 acts on
⟨∆| diagonally.
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Building block

The building block of τVI(t) is the four point regular conformal block
with c = 1:

⟨θ2∞| ·
(
Φ

θ2
1

θ2
∞,σ2(1)Φ

θ2
t

σ2,θ0
(t)|θ20⟩

)
.

So, it is natural to expect that a building block of τV(t) is the irregular
conformal block having one irregular singular point and two regular
singular points with c = 1:

⟨θ2∞| ·
(
Φ

θ2
t

(Λ1−β,Λ2),(Λ1,Λ2)
(t)|(Λ1,Λ2)⟩

)
,(

⟨θ2∞|Φ∗,θ2
t

θ2
∞,σ2(t)

)
· |(Λ1,Λ2)⟩.
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Theorem

A series expansion of the Painlevé V tau function at the irregular singular
point ∞ is given by

τ(t) =
∑
n∈Z

sn(−1)n(n+1)/2G (1± θ0 + θ − β − n)G (1 + θt ± (β + n))

× ⟨θ20| ·
(
Φ

θ2
t

(θ−β−n,1/4),(θ,1/4)(t
−1)|(θ, 1/4)⟩

)
.

We prove this theorem by confluence limit.
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A three-point irregular conformal block with c = 1 is expanded as

⟨θ20| ·
(
Φ

θ2
t

(θ,1/4),(θ−β,1/4)(1/t)|(θ, 1/4)⟩
)

= t2θ
2
t+2β(θ−β)eβt

(
1 + 2

(
2β3 − 3β2θ + βθ2 − βθ20 − βθ2t + θθ2t

)
t−1

+ 2
(
4β6 − 12β5θ + 13β4θ2 − 4β4θ20 − 4β4θ2t + 5β4 − 6β3θ3 + 6β3θθ20

+ 10β3θθ2t − 10β3θ + β2θ4 − 2β2θ2θ20 − 8β2θ2θ2t + 6β2θ2 + β2θ40

+ 2β2θ20θ
2
t − 3β2θ20 + β2θ4t − 3β2θ2t + 2βθ3θ2t − βθ3

−2βθθ20θ
2
t + βθθ20 − 2βθθ4t + 5βθθ2t + θ2θ4t − 2θ2θ2t + θ20θ

2
t

)
t−2 + · · ·

)
.

It is natural to expect that these irregular conformal blocks have
combinatorial expressions.
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Note that the coefficient of t−1 should be a sum associated with ((1), ∅),
(∅, (1)).

Fortunately, the coefficient of t−1 is expressed as

2
(
2β3 − 3β2θ + βθ2 − βθ20 − βθ2t + θθ2t

)
= 2(β − θ)

(
β2 − θ2t

)
+ 2β

(
(θ − β)2 − θ20

)
.
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We also have that the coefficient of t−2 is equal to

1

2
(θ − β)(2(θ − β) + 1)

(
β2 − θ2t

) (
(β − 1)2 − θ2t

)
+

1

2
(θ − β)(2(θ − β)− 1)

(
β2 − θ2t

) (
(β + 1)2 − θ2t

)
+ 2(2(θ − β)β − 1)

(
β2 − θ2t

) (
(θ − β)2 − θ20

)
+ β(2β + 1)

(
(θ − β)2 − θ20

) (
(θ − β − 1)2 − θ20

)
+ β(2β − 1)

(
(θ − β)2 − θ20

) (
(θ − β + 1)2 − θ20

)
.

We put

Mλ,µ =
∏

(i,j)∈λ

(2(β − θ) + i − j)
∏

(i,j)∈µ

(−2β + i − j),

Nλ,µ = (−1)|µ|
∏

(i,j)∈λ

(β + i − j)2 − θ2t
hλ(i , j)2

∏
(i,j)∈µ

(θ − β + i − j)2 − θ20
hµ(i , j)2

.
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Conjecture (N, arXiv:1611.08971)

A three-point irregular conformal block with two regular singular points t,
∞ and one irregular singular point 0 of rank one admits the following
combinatorial formula

⟨θ20| ·
(
Φ

θ2
t

(θ,1/4),(θ−β,1/4)(t)|(θ, 1/4)⟩
)

= t−2θ2
t−2β(θ−β)e

β
t

∑
λ,µ∈Y

t |λ|+|µ|
∑

ν⊂λ,η⊂µ,
|ν|=|η|

(−1)|ν|cν,ηλ,µMλ/ν,µ/ηNλ,µ,

where cν,ηλ,µ ∈ Z≥0, as an expansion at the irregular singular point 0.

Hajime Nagoya On degeneration limits of Virasoro conformal blocks



Motivation
Irregular conformal blocks

Confluence Limit
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From Gauss to Kummer

The Gauss hypergeometric equation

x(1− x)
d2y

dx2
+ (γ − (α+ β + 1)x)

dy

dx
− αβy = 0

admit a confluence limit as

β → ∞, x → x

β
.

Taking the limit, we obtain the Kummer confluent hypergeometric
equation

x
d2y

dx
+ (γ − x)

dy

dx
− αy = 0.
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Limit of solutions

The Gauss hypergeometric equation has the following local solutions:

∞∑
n=0

(α)n(β)n
(γ)n(1)n

xn, x1−γ
∞∑
n=0

(α− γ + 1)n(β − γ + 1)n
(2− γ)n(1)n

xn, (x = 0),

x−α
∞∑
n=0

(α)n(α− γ + 1)n
(α− β + 1)n(1)n

x−n, x−β
∞∑
n=0

(β)n(β − γ + 1)n
(β − α+ 1)n(1)n

x−n, (x = ∞),

where (α)n = α(α+ 1) · · · (α+ n − 1). It is easy to see that the three
solutions except the last one admit limits by β → ∞, x → x/β.

The last
one is transformed to

x−β

(
1− 1

x

)γ−α−β ∞∑
n=0

(γ − α)n(1− α)n
(β − α+ 1)n(1)n

x−n.

Then, we have the limit by β → ∞, x → x/β.
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Consider
|R(2)⟩ = Φ∆3

∆4,∆
(w)Φ∆2

∆,∆1
(z)|∆1⟩.

In what follows, we let w go to zero, while z is in a general position.
Then |R(2)⟩ becomes an expansion of z at the irregular singular point
zero. We already know how to take a limit of Φ∆3

∆4,∆
(w)|∆⟩ and the

coefficients Rk(w) of zk (k ≥ 1) in

|R(2)⟩ = z∆−∆2−∆1w∆4−∆3−∆
∞∑
k=0

Rk(w)zk

diverge.

Instead, Gaiotto and Teschner suggested a rearranged expansion
of |R(2)⟩:

|R(2)⟩ = z∆−∆2−∆1w∆4−∆3−∆
(
1− z

w

)A ∞∑
k=0

zk |R(1)
k ⟩

for some constant A in Appendix D of [Gaiotto, Teschner 2012].
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The condition of the limit of |R(1)
0 ⟩ is

∆3 −∆ =
Λ1

ϵ
+ O(1), 2∆3 −∆ =

Λ2

ϵ2
+ O(ϵ−1) (ϵ → 0).

The resulting vector |I (1)⟩ = limϵ→0 |R(1)
0 ⟩ with w = ϵ satisfies

L1|I (1)⟩ = Λ1|I (1)⟩, L2|I (1)⟩ = Λ2|I (1)⟩, Ln|I (1)⟩ = 0 (n > 2).

Also |R(1)
k ⟩ satisfy for n > 0

(Ln − wn(w∂w +∆4 + n∆3 −∆))|R(1)
k ⟩

= A
n−1∑
s=1

wn−s |R(1)
k−s⟩+ (A+∆+ n∆2 −∆1 + k − n)|R(1)

k−n⟩

The coefficients in the left hand side admit a limit. Also the coefficients
in the right hand side admit a limit by

A = O(ϵ−1), A+∆−∆1 = O(1), ϵ → 0.
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Furthermore, if we set

Aϵ = −β + O(ϵ), A+∆−∆0 = α+∆z , (3.1)

where

α = −βΛ1

2Λ2
− 2∆2, (3.2)

then the limits of the recursion relations for |R(1)
k ⟩ for Ln (n ≥ 1) take

exactly the same forms for the vectors vk of Φ∆z

(Λ1,Λ2),(Λ1+β,Λ2)
(z):

M
[1]
(Λ1+β,Λ2)

→ M
[1]
(Λ1,Λ2)

such that

Φ∆z

(Λ1,Λ2),(Λ1+β,Λ2)
(z)|((Λ1 + β,Λ2))⟩ = zαeβ/z

∞∑
k=0

vkz
k ,

which are

(L1 − Λ1)vk =(α+ 2∆z + k − 1)vk−1,

(L2 − Λ2)vk =− βvk−1 + (α+ 3∆z + k − 2)vk−2,

Lnvk =− βvk−n+1 + (α+ (n + 1)∆z + k − n)vk−n (n > 2).

The uniqueness of vk proved in [N, 2015] implies that all |R(1)
k ⟩ converge.
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We are taking a limit of the series expansion of Painlevé VI tau function
at t = 0:

τVI(t) =
∑
n∈Z

snC

(
θ1, θt

θ∞, σ + n, θ0

)
F
(

θ1, θt
θ∞, σ + n, θ0

;
t

w

)
as w(= ϵ) goes to 0. We know how to take a limit of

F
(

θ1, θt
θ∞, σ + n, θ0

;
t

w

)
= wθ2

∞−θ2
1−(σ+n)2t(σ+n)2−θ2

t−θ2
0

(
1− t

w

)A(n) ∞∑
k=0

Rk(w)tk .

Then, from w−n2−A(n), we have ϵ−2n2 .
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Using

G (1 + x + n) =G (1 + x)
n∏

i=1

Γ(x)
n+1−i∏
j=1

(x + n + 1− i − j),

G (1 + x − n) =G (1 + x)
n−1∏
i=0

Γ(x)−1
n−2−i∏
j=0

(x − n + 1 + i + j)

for n > 0, we obtain

C

(
θ1, θt

θ∞, σ + n, θ0

)
=PQnϵ2n

2

C
(
θ∞, β + n, θt , θ

)
(1 + O(ϵ)),

where P and Q are independent to n.
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