
Conservation laws
and stability of higher-derivative theories

Dmitry S. Kaparulin

Tomsk State University, Faculty of Physics

5th String Theory Meeting in the Greater Tokyo Area,

December 02, 2016

based on arXiv: 1407.8481, 1510.02007, 1510.08365

D. Kaparulin (Tomsk State University) 5th String Theory Meeting in the Greater Tokyo Area 1 / 27



Background: Ostrogradski instability

Given the set of fields ϕJ(t), consider the Lagrangian theory with the action

S =

∫
L(ϕ, ϕ̇, ϕ̈) dt .

Then, the canonical (or Noether) energy of the theory reads

E = ϕ̈J ∂L

∂ϕ̈J
+ ϕ̇J

( ∂L
∂ϕ̇J

− d

dt

∂L

∂ϕ̈J

)
− L =

∂2L

∂ϕ̈I∂ϕ̈J
ϕ̇I ...ϕJ + . . . ,

dots denote the terms, which depend on ϕ̈, ϕ̇, ϕ.

The energy contains
...
ϕJ in a linear way. If the Hesse matrix is non-degenerate,

det
∂2L

∂ϕ̈I∂ϕ̈J
6= 0 ,

the third derivates
...
ϕJ ’s are independent Cauchy data and, thus, the energy cannot

be bounded from below.

The corresponding quantum theory does not have a well-defined vacuum state with
the lowest energy. Such theory is unstable.
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Idea

• Use of alternative Hamiltonian formulation and quantization scheme

Key steps

• Construct the most general conserved quantity. If the theory has several integrals
of motion, take their combination with indefinite coefficients.

• Take the general conserved quantity as the anastz of the Hamiltonian. Find the
Poisson bracket. At this step, the theory may appear to be poly-Hamiltonian.

• Consider the interactions which are compatible with alternative Hamiltonian for-
mulations.

If one of alternative Hamiltonian formulations has the bounded from below Hamilto-
nian, the corresponding theory is stable from the classical and quantum viewpoints.

K. Bolonek and P. Kosinski, Acta Phys. Polon. B 36 (2005) 2115

E.M. Damaskinsky and M.A. Sokolov, J. Phys. A 39 (2006) 10499

D.S.K., S.L. Lyakhovich, A.A. Sharapov, Eur. Phys. J. C 74 (2014) 3072

I. Masterov, Nucl. Phys. B 902 (2016) 95
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Critical problems

• How to construct the most general conserved quantity in a higher-derivative
theory? What conserved quantities are relevant?

• How to find the Poisson bracket? When does the solution to the problem exist?

• Is there algorithmic procedure for construction of stable interactions?

And, finally,

• Can one see that the higher-derivative theory is stable already at the first step of
alternative Hamiltonian formulation construction?

In this talk, we answer these questions and consider the alternative Hamiltonian
formulation construction for the certain class of higher derivative models.
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Plan

The plan of the talk is follows:

• Warm-up example: the Pais-Uhlenbeck oscillator

• Derived theories

• Symmetries and conservation laws

• Hamiltonian formulation (condition of existence)

• Stable interactions

• Field-theoretical example: 3rd order extensions of the Chern-Simons model

• Summary
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4th order Pais-Uhlenbeck oscillator

• Lagrangian

L =
1

2

1

ω2
2 − ω2

1

(
ϕ̈2 − (ω2

1 + ω2
2)ϕ̇2 + ω2

1ω
2
2ϕ

2
)
,

(n)

ϕ=
dnϕ

dtn
, 0 < ω1 < ω2 .

with ϕ(t) being the dynamical variable; ω’s are the frequencies of oscillations.

The equation of motion reads

1

ω2
2 − ω2

1

( d2

dt2
+ ω2

1

)( d2

dt2
+ ω2

2

)
=

1

ω2
2 − ω2

1

(
(4)

ϕ +(ω2
1 + ω2

2)ϕ̈+ ω2
1ω

2
2ϕ) = 0 .

• The Hesse matrix
∂2L

∂ϕ̈∂ϕ̈
=

1

ω2
2 − ω2

1

6= 0

is non-degenerate, so the theory is non-singular.

• The canonical energy

E = ϕ̈
∂L

∂ϕ̈
+ ϕ̇

( ∂L
∂ϕ̇
− d

dt

∂L

∂ϕ̈

)
− L =

ϕ̈2 − (ω2
1 + ω2

2)ϕ̇2 − 2ϕ̇
...
ϕ − ω2

1ω
2
2ϕ

2

2(ω2
2 − ω2

1)
.

It is unbounded from below, because it is linear in
...
ϕ.
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Integrals of motion

In a general case, the Pais-Uhlenbeck oscillator has two integrals of motion

J1 =
1

2

( ...
ϕ + ω2

2ϕ̇

ω2
2 − ω2

1

)2

+
ω2

1

2

(
ϕ̈+ ω2

2ϕ

ω2
2 − ω2

1

)2

, J2 = J1

∣∣∣
ω1↔ω2

.

Both J1 and J2 are non-negative, J1, J2 ≥ 0 , and independent.

The general conserved quantity is the linear combination of these integrals of motion

Jα1,α2 = α1J1 + α2J2 .

Here, α1 and α2 are some real constants.

α1 = −α2 = 1 corresponds to the canonical energy. It is not bounded from below
because J1 and J2 contributions have different signs.

For α1, α2 ≥ 0, the integral of motion Jα1,α2 is a bounded quantity.

The Noether theorem relates J1 and J2 to the following symmetries

δ1ϕ = −
...
ϕ + ω2

2ϕ̇

ω2
2 − ω2

1

, δ2ϕ = −
...
ϕ + ω2

1ϕ̇

ω2
2 − ω2

1

.
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The Pais-Uhlenbeck model is equivalent to the system of two harmonic oscillators

ẍ + ω2
1x = 0 , ÿ + ω2

2y = 0 .

The following formulas establish correspondence between the solutions to the the-
ories

ϕ(t) = x(t) + y(t), x(t) =
ϕ̈+ ω2

2ϕ

ω2
2 − ω2

1

, y(t) =
ϕ̈+ ω2

1ϕ

ω2
1 − ω2

2

.

(Note: this correspondence is one-to-one only on the mass shell)

In the harmonic coordinates, the integrals of motion J1 and J2 take the form

J1 =
1

2
ẋ2 +

ω2
1

2
x2 , J2 =

1

2
ẏ2 +

ω2
2

2
y2 .

The following symmetries related to the integrals of motion

δ1ϕ = −ẋ , δ2ϕ = −ẏ

The integrals J1 and J2 are the ”energies” of oscillatory modes x and y .
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Alternative Hamiltonian formulations

Introduce the collective notation za = {ϕ, ϕ̇, ϕ̈,
...
ϕ} for the phase-space variables.

Then the bi-Hamiltonian formulation (Bolonek and Kosinski, 2005) reads

ża = {za, Jα1,α2}α1,α2 ,

with α1, α2 being the parameters. We assume that α1α2 6= 0.

The Poisson bracket { , }α1,α2 is defined by the relations

{ϕ, ϕ̇}α1,α2 =
1

α1
+

1

α2
, {ϕ ,

...
ϕ}α1,α2 = −{ϕ̇, ϕ̈}α1,α2 =

ω2
1

α1
+
ω2

2

α2

{ϕ̈ ,
...
ϕ}α1,α2 =

ω4
1

α1
+
ω4

2

α2
, {ϕ, ϕ̈}α1,α2 = {ϕ̇,

...
ϕ}α1,α2 = 0 .

α1 = −α2 = 1 corresponds to the Ostrogradski’s Hamiltonian formulation.

α1 = α2 = 1 corresponds to the ”alternative” and stable Hamiltonian formulation.

Ostrogradski and ”alternative” Hamiltonian formulations are not equivalent.
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Stable interactions

(D.S.K., S.L. Lyakhovich, A.A. Sharapov, 2014)

(4)

ϕ +(ω2
1 + ω2

2)ϕ̈+ ω2
1ω

2
2ϕ+ U ′(x − y) = 0 , J = J1,1 + EU(x − y) ,

U ′ =
∂U

∂ϕ
− d

dt

∂U

∂ϕ̇
, EU = ϕ̇

∂U

∂ϕ̇
− U , U = U(ϕ̇, ϕ) .

(D.S.K., S.L. Lyakhovich, A.A. Sharapov, 2016)

(4)

ϕ +(ω2
1 + ω2

2)ϕ̈+ ω2
1ω

2
2ϕ+ 2Ü ′ + (ω2

1 + ω2
2)U ′ = 0 ,

J = J1,1(x +
1

2
U, y +

1

2
U) + EU ,

U ′ =
∂U

∂ϕ
− d

dt

∂U

∂ϕ̇
, EU = ϕ̇

∂U

∂ϕ̇
− U , U = U(ϕ̇, ϕ) .

(D.S.K., S.L. Lyakhovich, to appear in Russ. Phys. J., 2017)

These two interactions are equivalent on the mass shell.
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Part 2.

Conservation laws and stability of derived field theories
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Linear field theories

We use the following notation.

• Spacetime is n-dim. Minkowski space with local coordinates xµ , µ = 0, n − 1.

• Signature of metric is ηµν = diag{+ ,− , . . . ,−}.

• Set of fields is ϕ = {ϕJ(x)}. The multi-index J includes all discrete indices.

• The theory admits appropriate constant metrics to rise and lower multi-indices.

In this setting, any local linear system of field equations can be represented in the
following form:

MIJ(∂)ϕJ = 0.

Here, M = {MIJ} is the matrix whose entries are polynomials in ∂µ. If ∂µ is the
partial derivative w.r.t. to the coordinate xµ, we have the system of PDEs.

• M is known as the wave operator.
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Derived field theories

Linear field theory is called a derived theory if its wave operator is the polynomial
of a formally self-adjoint operator W of lower order.

• Equation of motion of a derived can be represented in two alternative forms

MIJϕ
J = 0 ,

M(W ) =
N∑

k=0

lkW
k = lN

r∏
a=1

(W − ωa)pa
r+s∏

α=r+1

(W 2 − (ωα + ωα)W + |ωα|2)pα .

Here lk are some constants and ωa, ωα, ωα be the roots of the polynomial M(W )
with the multiplicities pa and pα. We use the collective notation A = {a, α} for the
indices labelling roots.

• The operator W is self-adjoint if W † = W . The conjugation rule is defined by

W †IJ(∂) = W (−∂)JI .

• Any derived theory is Lagrangian with the Lagrangian

L =
1

2
ϕIMIJϕ

J .
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Examples of derived theories

• Scalar field with higher derivatives

ϕJ(x) = ϕ(x) , W = � , M = (� + m2
1)(� + m2

2) .

EoM: (� + m2
1)(� + m2

2)ϕ = 0 .

• Bopp-Podolski generalized electrodynamics

ϕJ(x) = ϕµ(x) , W = �− ∂∂· , M = W (W + m2) .

EoM: (� + m2)∂µFµν = 0 , Fµν = ∂µϕν − ∂νϕµ .

• Odd-order Pais-Uhlenbeck oscillator

ϕJ(x) = {ϕi (t)}, Wij = εij
d

dt
, εij = −εji , ε12 = 1 .

EoM : Mijϕ
j =

r∏
a=1

( d2

dt2
+ ω2

a

)
εij ϕ̇

j = 0 , i , j = 1, 2.
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Reduction of order

Introduce the cofactors ΩA by the formulas

ΩA =
∏
a 6=A

(W − ωa)pa
∏
α6=A

(W 2 − (ωα + ωα) + |ω|2α)qα .

Then, the derived theory is equivalent to the system of equations of lower order

(W − ωa)paξa = 0 , (W 2 − (ωα + ωα) + |ω|2α)pαξα = 0 .

for the unknown fields ξA = {ξJA(x)}.

The following relations establish a correspondence between solutions of the models

ξA = ΩAϕ , ϕ =
∑
A

ΛAξA ,

where the matrix differential operators ΛA are defined from the equation:∑
A

ΛAΩA = 1 , ΛA =

NA∑
k=0

λkAW
k , NA = pa − 1 or 2pα − 1
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Symmetries and conservation laws

Provided by W is space-time translation invariant, [W , ∂] = 0, the following trans-
formations keep the action of derived theory invariant:

δAϕ = ∂µξA , δAS = 0 .

If NA > 0 (this is the case of multiple real and complex rings), then the following
transformations are also symmetries of the action:

δkAϕ = ∂µW
kξA , k = 1, . . . ,NA .

• These two groups include exactly N × n symmetries.

Corresponding Noether’s conserved currents combine into N second-rank conserved
tensors

(Θk
A)µν , k = 0, . . . ,NA .

Here, k = 0 corresponds to the first group of symmetries. These conserved tensors
Θ0

A are the ”energy-momentum tensors” for the fields ξA.
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General conservation law

Since the stability is concerned, the conserved quantities associated to the time
translations are relevant.

Introduce conserved quantities are related to the time-translation symmetry

JkA =

∫
dn−1x(Θk

A)0
0 .

Then, the general ansatz for conserved quantity reads

Jα =
∑
A

Na∑
k=1

αk
AJ

k
A ,

with αk
A being some constants. The number of independent parameters αk

A is N.

• The canonical energy E = J corresponds to the choice αk
A = −λkA.

• Depending on the values of α’s the conserved quantity J may be bounded.

• Some conserved tensors JkA may be trivial.
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Hamiltonian formalism

Conjecture

Let Jᾱ be the conserved quantity for some fixed value of the parameters αk
A, i.e.

Jᾱ =
∑
A

Na∑
k=0

αk
AJ

k
A .

Then Jᾱ is a Hamiltonian of the derived theory w.r.t. some Poisson bracket if and
only if

α0
A 6= 0

for all A′s.

Corollary 1

Any derived theory is poly-Hamiltonian. There are N free parameters αk
A in the

Hamiltonian.

Corollary 2

The Hamiltonian Jα may be bounded or unbounded depending on the values of
parameters αk

A. If Jᾱ ≥ 0, the theory is stable classically and quantum mechanically.
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Stable interactions

The derived theory admits two types of (stable) nonlinear extensions

1) Mϕ+ U ′(Vϕ) = 0 , J ′ = Jᾱ(ϕ) + EU(Vϕ) .

2) Mϕ+ VU ′(ϕ) = 0 , J ′ = Jᾱ(ϕ− VU) + EU(ϕ) .

Here,

• U ′ is the Euler-Lagrange derivative of interaction function U = U(ϕ, ∂ϕ, ..)

• EU is the canonical energy of the interaction;

• V (W ) is the matrix differential operator such that

VΩ = −1 (ModM) , V =
N−1∑
k=0

vkW k , Ω =
∑
A

NA∑
k=1

αk
AW

kΩA ;

• These two types of nonlinear extensions are equivalent on the mass shell.
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Stability analysis procedure for a derived theory

The main four steps are follows:

• Write out the Lagrangian and equations of motion. Find the wave operator M.

• Identify the operator W and structure of roots of the polynomial M(W ).

• Construct the symmetries associated with the factors of M and conservation laws.

• Write out the general conserved quantity. Identify the range of parameters where
it is bounded.

If conditions for the parameters ensure existence of Hamiltonian formulation with
bounded from below Hamiltonian, the theory is stable.

(Be attentive in case of multiple roots)
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Part 3.

Field-theoretical example.
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3rd-order extension of 3d Chern-Simons model

Action

S =
1

2

∫
d3x

( 1

m
εµνρFµ∂νFρ+l2F

µFµ+l1mFµϕµ+l0m
2ϕµϕµ

)
, Fµ = εµνρ∂νϕρ.

where ϕµ is the vector field on 3d Minkowski space, m is a constant with the
dimension of mass, l0, l1, l2 are some constant parameters.

Equations of motion

− 1

m
�εµνρ∂νϕρ − l2(�δµν − ∂µ∂ν)ϕν + l1mε

µνρ∂νϕρ + l0m
2ϕµ = 0 .

We can rewrite the equations of motion in the form

1

m2
(W 3 + l2W

2 + l1W + l0)ϕ = 0 , W µν = εµρν∂ρ ,

so we are dealing with the derived theory.

The Chern-Simons operator W is obviously self-adjoint, W † = W .
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Depending on the values of parameters m , l2 , l1 , l0 four cases seem to be different.

• Polynomial M(W ) has three different real roots ωa , a = 1, 2, 3.

l2 = −ω1 − ω2 − ω3 , l1 = ω1ω2 + ω1ω3 + ω2ω3 , l0 = −ω1ω2ω3 .

• Simple and multiplicity 2 real roots ωa , a = 1, 2 : p1 = 1, p2 = 2.

l2 = −ω1 − 2ω2 , l1 = 2ω1ω2 + ω2
2 , l0 = −ω1ω

2
2 .

• Real and complex roots ω1 and ω2.

l2 = −ω1 − ω2 − ω2 , l1 = ω1ω2 + ω1ω2 + |ω2|2 , l0 = −ω1|ω2|2 .

• Multiplicity 3 real root ω1.

l2 = −3ω1 , l1 = 3ω2
1 , l0 = −ω3

1 .

The theory is stable in case of different real roots and multiple zero real root, and
unstable otherwise.

The canonical energy is unbounded in all the cases.
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Symmetries and conservation laws (three real roots)

• Symmetries

δaϕ = Ωaϕ , Ωa =
∏
b 6=a

(W − ωb) .

• Conservation laws

J0
a = Ja ≈

ωa

2

∫
d2x(Ωaϕ)2 , (Ωaϕ)2 = (Ωaϕ0)2 + (Ωaϕ1)2 + (Ωaϕ2)2.

(all conservation laws are sign-definite depending on the sign of the root ωa)

General conserved quantity

Jα = α1J1 + α2J2 + α3J3 , αa ≡ α0
a ,

is bounded from below of αaωa ≥ 0 , a = 1, 2, 3.

It is bounded for αa’s such that αaωa > 0 (take any αb 6= 0 for ωb = 0).

In this case, the extension of Chern-Simons theory admits Hamiltonian formulation
with bounded Hamiltonian. It is stable.
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Symmetries and conservation laws (two real roots)

• Symmetries

δ1ϕ = (W − ω2)2ϕ , δp2ϕ = (W − ω2)p(W − ω1)ϕ , p = 0, 1.

• Conservation laws

J1 ≡ J0
1 ≈

ωa

2

∫
d2x(Ω1ϕ)2 , J0

2 ≈
1

2

∫
d2x((WΩ2ϕ)2 − ω2

2(WΩ2ϕ)2) ,

J1
2 ≈ ω2

2

∫
d2x(WΩ2ϕ,Ω2ϕ) , Ω1 = (W − ω2)2 , Ω2 = W − ω1 .

(J0
2 is not bounded unless ω2 = 0, i.e. unless multiple root equals zero)

General conserved quantity

Jα = α1J1 + α0
2J

0
2 + α1

2J
1
2 , α1 ≡ α0

1 ,

is bounded from below if simultaneosly three conditions are satisfied

α1ω1 ≥ 0 , α0
2 ≥ 0 , and ω2 = 0 .

The extension of Chern-Simons theory is stable if multiple root equals zero.
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Some references on non-Lagrangian field theory

Quantization

P.O. Kazinski, S.L. Lyakhovich and A.A. Sharapov, Lagrange structure and
quantization, JHEP 07 (2005) 076.

S.L. Lyakhovich and A.A. Sharapov, Schwinger-Dyson equation for non-
Lagrangian field theory, JHEP 02 (2007) 0007.

S.L. Lyakhovich and A.A. Sharapov, Quantizing non-Lagrangian gauge theories:
an augmentation method, JHEP 01 (2005) 047.

Generalization of the first Noether’s theorem

D.S.K., S.L. Lyakhovich and A.A. Sharapov, Rigid symmetries and conservation
laws in non-Lagrangian field theory, J. Math. Phys. 51 (2010) 082902.

Interactions of gauge fields

D.S.K., S.L. Lyakhovich and A.A. Sharapov, Consistent interactions and involu-
tion, JHEP 01 (2010) 097.

Thank you for your attention!
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