AdS backgrounds in five-dimensional $\mathcal{N}=2$ supergravity

Constantin Muranaka

Universität Hamburg

based on 1601.00482 and 1611.02982 with J. Louis

2. December 2016

Motivation: The AdS/CFT correspondence

Main idea: supersymmetric AdS backgrounds

 AdS_5 backgrounds and their moduli spaces

Examples from type IIB supergravity

Motivation: The AdS/CFT correspondence

Consider a stack of $N \ D3$ branes in type IIB string theory.

- ▶ on the branes: open strings $\rightarrow 4d SU(N)$ gauge theory
- \blacktriangleright in the bulk: closed strings \rightarrow relativistic gravity on AdS_5
- idea [Maldacena '98]:

 $\mathrm{AdS}=\mathrm{CFT}$

Example: $AdS_5 \times S^5$

 $\mathcal{N} = 4$, d = 4 SCFT \leftrightarrow type IIB supergravity on $\mathrm{AdS}_5 \times S^5$

- simplest example
- relation between quantum field theory and classical SUGRA
- but: very symmetric \Rightarrow restricted

Generalizations: Sasaki-Einstein geometry

- \blacktriangleright replace S^5 by a general compact Sasaki-Einstein manifold
- ▶ resulting theory preserves 8 real supercharges ($\mathcal{N}=2$) on AdS_5
- dual to $\mathcal{N} = 1$ SCFT in 4D
- explicit family of examples: Y^{p,q} manifolds [Gauntlett et. al., 06']

Explicit relations

- \blacktriangleright global symmetry of SCFT \leftrightarrow gauge group of AdS background
- ► supersymmetric deformation space of SCFT ↔ supersymmetric moduli space of AdS background
- Question: Relation between SCFT and AdS background without compactification?

Main idea: supersymmetric AdS backgrounds

Supersymmetric AdS backgrounds

- \blacktriangleright classical supersymmetric solutions of supergravity with $\Lambda < 0$
- play a key role in the AdS/CFT correspondence
- AdS moduli spaces are related to conformal manifolds of SCFTs

Idea: Study general conditions on AdS solutions preserving \mathcal{N} supersymmetry in a d-dimensional supergravity.

[de Alwis, Louis, McAllister, Triendl, Westphal '14; Louis, Triendl '14; Louis, Lüst '15; Louis, Triendl, Zagermann '15; Louis, CM '16; Louis, Lüst '16; Louis, CM '16]

General method: background conditions

Start with a general supergravity theory that contains scalars Φ and fermions $\Psi.$ Denote background values by $\langle\cdot\rangle.$

- spectrum is determined by number of supersymmetries and dimension d
- Lorentz invariance: only $\langle\Phi\rangle\neq 0$
- ► maximal preserved supersymmetry: $\langle \delta_{\epsilon} \Psi \rangle = 0$ ⇒ conditions $\langle F(\Phi) \rangle = 0$
- $\langle V(\Phi) \rangle < 0$ negative cosmological constant

General method: moduli spaces

- expand scalars $\Phi = \langle \Phi \rangle + \delta \Phi$
- compute conditions $\langle \delta F(\Phi) \rangle = 0$
- moduli space is given as

$$\mathcal{M} = \{$$
solutions $\delta \Phi$ to $\langle \delta F(\Phi) \rangle = 0 \}$

caution: remove unphysical degrees of freedom (Goldstone bosons)

 AdS_5 backgrounds and their moduli spaces

Field content

[Bergshoeff et. al, '04]

- here: 8 real supercharges ($\mathcal{N}=2$)
- gravity multiplet

$$(g_{\mu\nu}, A^0_\mu, \psi^\mathcal{A}_\mu) \quad \mathcal{A} = 1, 2$$

• n_V vector multiplets

$$(A^i_\mu, \lambda^{i\mathcal{A}}, \phi^i) \quad i = 1, ..., n_V$$

 \blacktriangleright n_H hypermultiplets

$$(q^u, \zeta^{\alpha})$$
 $u = 1, ..., 4n_H$ $\alpha = 1, ..., 2n_H$

Scalar fields

- consider only scalar fields
- these are maps from space time M_5 to a target space

$$\phi^i \otimes q^u : M_5 \longrightarrow \mathcal{T}_V \times \mathcal{T}_H$$

- \mathcal{T}_V is a projective special real manifold
- \mathcal{T}_H is a quaternionic Kähler manifold

Projective special real manifolds

Projective special real manifold (\mathcal{T}_V, g) is defined as follows.

- ▶ let h^I , $I = 0, ..., n_V$ be coordinates on \mathbb{R}^{n_V+1}
- for a cubic homogeneous polynomial $P(h^I)$, consider

$$\mathcal{T}_V = \{ P(h^I) = 1 \}$$

then a positiv metric for the h^I's is given by

$$a_{IJ} = -\frac{1}{3}\partial_I\partial_J\log P$$

- ▶ solve $P(h^{I}(\phi)) = 1$ for $\phi^{i} \Rightarrow$ coordinates on \mathcal{T}_{V}
- endow \mathcal{T}_V with the pullback metric

$$g_{ij} = \partial_i h^I \partial_j h^J a_{IJ}$$

Quaternionic Kähler manifolds

Quaternionic Kähler manifold (\mathcal{T}_H, G, Q) is defined by

- a Riemannian metric G on \mathcal{T}_H
- a ∇^G -invariant rank three subbundle $Q \subset \operatorname{End}(T\mathcal{T}_H)$
- ► Q is locally spanned by a triplet Jⁿ of almost complex structures s.t.

$$J^1 J^2 = J^3$$

• ∇^G rotates endomorphisms inside Q, i.e.

$$\nabla J^n := \nabla^G J^n - \epsilon^{npq} \theta_p J_q = 0$$

Isometries of \mathcal{T}_H

- isometries of \mathcal{T}_H are given by triholomorphic Killing vectors k_I
- this defines associated triplets of moment maps satisfying

$$\nabla \mu_I^n = -\frac{1}{2}G \circ J^n(k_I)$$

introduce "dressed" quantities

$$k := h^I k_I, \quad \mu^n := h^I \mu_I^n$$

 \blacktriangleright gauging of the hypermultiplet scalars q^u by

$$\mathcal{D}q^u = dq^u + k_I^u A^I$$

▶ gauging also introduces a scalar potential V, i.e. a function

 $V: \mathcal{T}_V \times \mathcal{T}_H \longrightarrow \mathbb{R}$

here:

$$V(\phi, q) = 2G(k, k) + 2g(\partial \mu^n, \partial \mu_n) - 4\mu^n \mu_n$$

▶ negative cosmological constant only from $\mu^n \mu_n$

Fermionic supersymmetry variations

- fermionic shift matrices are given in terms of isometries on \mathcal{T}_H
- gravitino variation

$$\delta_{\epsilon}\psi^{\mathcal{A}}_{\mu} = D_{\mu}\epsilon^{\mathcal{A}} - i\mu^{n}\sigma^{\mathcal{A}\mathcal{B}}_{n}\epsilon_{\mathcal{B}} + \dots$$

gaugino variation

$$\delta_{\epsilon}\lambda^{i\mathcal{A}} = -\partial_{i}\mu^{n}\sigma_{n}^{\mathcal{A}\mathcal{B}}\epsilon_{\mathcal{B}} + \dots$$

hyperino variation

$$\delta_{\epsilon}\zeta^{\alpha} = \frac{\sqrt{6}}{4}\mathcal{U}^{\alpha\mathcal{A}}(k)\epsilon_{\mathcal{A}} + \dots$$

for $\mathcal{U}^{lpha\mathcal{A}}$ an invertible vielbein on \mathcal{T}_H

Maximally supersymmetric AdS backgrounds I

• maximal supersymmetry \Rightarrow fermionic SUSY variations vanish

$$\langle \delta_{\epsilon} \psi^{\mathcal{A}}_{\mu} \rangle = \langle \delta_{\epsilon} \lambda^{i\mathcal{A}} \rangle = \langle \delta_{\epsilon} \zeta^{\alpha} \rangle = 0$$

gaugino and hyperino variation imply

$$\langle k \rangle = \langle h^I k_I \rangle = 0, \quad \langle \partial \mu^n \rangle = \langle \partial h^I \mu_I^n \rangle = 0$$

► $\Rightarrow U(1)_R$ symmetry always unbroken in the vacuum [Tachikawa '06]

Maximally supersymmetric AdS backgrounds II

- gravitino variation \Rightarrow Killing spinor equation
- this implies

$$\langle \mu^n \rangle = \langle h^I \mu^n_I \rangle = \lambda v^n \quad v \in S^2$$

- $\lambda \in \mathbb{R}$ is related to the cosmological constant
- $\Rightarrow U(1)_R$ symmetry is gauged by the graviphoton $\langle h^I \rangle A_I$

Moduli space

- \blacktriangleright expand $\phi^i=\langle\phi^i\rangle+\delta\phi^i,\,q^u=\langle q^u\rangle+\delta q^u$
- require variations of background conditions to vanish

$$\langle \delta k \rangle = \langle \delta \mu^n \rangle = \langle \delta \partial \mu^n \rangle = 0$$

- one finds: variations $\delta \phi^i$ are fixed, but δq^u only constrained
- $\blacktriangleright \Rightarrow \mathsf{moduli space} \ \mathcal{M} \subset \mathcal{T}_H$

Structure of the moduli space I

Proposition

The space \mathcal{M} of physical deformations is a Kähler manifold. Sketch of the proof:

- \blacktriangleright remove unphysical deformations (Goldstone bosons) $\delta q^u \propto \langle k_I^u \rangle$
- use $SU(2)_R$ symmetry to rotate $\langle \mu^n \rangle = \lambda v^n$ in z-direction
- one shows: constraints on δq^u are J^3 invariant
- ullet \Rightarrow (\mathcal{M},G,J^3) is an almost hermitian manifold

Structure of the moduli space II

use the following [Alekseevsky, Marchiafava '00]:

Theorem

An almost hermitian submanifold (M,G,J) of a quaternionic Kähler manifold (\tilde{M},\tilde{G},Q) is Kähler if and only if there exists a section I of Q that anticommutes with J and

$$I(T_pM) \perp T_pM \quad \forall p \in M.$$

• here:
$$J = J^3$$
 and $I = J^1$

- constraints on δq^u imply $G \circ J^1 \equiv 0$ on \mathcal{M}
- $\Rightarrow (\mathcal{M}, G, J^3)$ is Kähler

Examples from type IIB supergravity

Type IIB solutions with AdS factors

- let SE₅ be a five-dimensional compact Sasaki-Einstein manifold
- \blacktriangleright consider type IIB solutions of the form $AdS_5 \times SE_5$
- such solutions preserve 8 real supercharges
- \Rightarrow AdS/CFT relates them with $\mathcal{N} = 1$ SCFTs

Question: How much of the ten-dimensional solution can we see in five-dimensional AdS backgrounds?

Idea: use consistent truncations!

- \blacktriangleright expand 10D fields into 5D fields on AdS_5 and Sasaki-Einstein structure forms
- consistency condition: 5D solutions must lift to 10D solutions
- ► resulting 5D theories preserve at least 8 supercharges ⇒ study AdS backgrounds of truncated theories

Compactifications on $T^{1,1}$

- ▶ here: study Sasaki-Einstein manifold $T^{1,1} = \frac{SU(2) \times SU(2)}{U(1)}$
- dual to Klebanov-Witten theory
- ▶ transitiv $SU(2) \times SU(2)$ action simplifies truncations
- 10D moduli space is complex five-dimensional [Ashmore et. al, '16]

The Betti-hyper truncation

- study truncation containing 1 vector multiplet and 3 hypermultiplets
- scalar target spaces

$$\mathcal{T}_V = SO(1,1), \quad \mathcal{T}_H = \frac{SO(4,3)}{SO(4) \times SO(3)}$$

- we find: this truncation admits AdS backgrounds
- \blacktriangleright but only two complex moduli: Axion-Dilaton τ + geometric modulus z
- moduli space is a torus bundle

$$T^2 \hookrightarrow \mathcal{M} \longrightarrow SU(1,1)/U(1)$$

Identification of the moduli space

Quesiton: What is the total space \mathcal{M} ?

compute Kähler potential of \mathcal{M}

$$K = -4\log(\tau - \bar{\tau}) - i\lambda\kappa_5 \frac{(z-\bar{z})^2}{\tau - \bar{\tau}}$$

• compare with Kähler potential of $SU(2,1)/U(2)_{\epsilon}$ for $\epsilon \in \mathbb{R}$

$$L_{\epsilon} = -\log(\tau - \bar{\tau} + i\epsilon(z - \bar{z})^2)$$

• expansion for small $\epsilon = 4\lambda\kappa_5$

$$L_{\epsilon} \simeq \frac{1}{4}K + \mathcal{O}(\epsilon^2)$$

 $\blacktriangleright \Rightarrow \mathcal{M} = SU(2,1)/U(2)_{\kappa_5 \to 0}$

Summary of results

- AdS_5 gauge groups contain $U(1)_R$ factor
- moduli space is Kähler
- explicit moduli space metrics from type IIB supergravity
- but: consistent truncations do not contain all moduli

Outlook

- ▶ study AdS₅ backgrounds in terms of U(1)_R actions on quaternionic K\u00e4hler manifolds
- compute metric corresponding to Betti-hyper truncation in Klebanov-Witten theory
- repeat computations in d = 3 supergravity
- obtain unifying formulation of AdS backgrounds in supergravity