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Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X [n] of n points on X parameterises ideals
I ⊂ OX such that OX/I has 0-dimensional support and
dimH0(OX/I) = n.

It is a partial resolution of singularities of the symmetric power
SnX = X n/Σn.

X [2] is the blow-up of the diagonal in S2X =⇒ X [2] is always
smooth.

If dimC X = 2, then X [n] is smooth for each n (Fogarty).

If dimC X = 2 and X has a complex symplectic form ω, then X [n]

has a canonical complex symplectic form ω[n] (Beauville).

=⇒ (together with the Calabi-Yau them) if X is a compact
Ricci-flat Kähler complex surface, then X [n] is hyperkähler for
each n.

What about noncompact X? True for ALE spaces (i.e. X [n] is
hyperkähler) (Nakajima, quiver varieties)



A toy example

X = C2. Nakajima describes (C2)[n] as follows:
it is the manifold of triples (B1,B2, i) ∈Matn,n(C)×Matn,n(C)×Cn

such that [B1,B2] = 0 and there is no proper subspace S of Cn such
that i ∈ S, B1S ⊂ S, B2S ⊂ S, modulo the GL(n,C)-action
(conjugation on Matn,n(C), standard on Cn).
The correspondence between such an orbit and an ideal of colength n
in C[z1,z2] is given by

(B1,B2, i) 7→ I = {f ∈ C[z1,z2]; f (B1,B2)i = 0}.

For example, assume that B1 and B2 are simultaneously
diagonalisable: B1 = diag(x1, . . . ,xn), B2 = diag(y1, . . . ,yn). The
stability condition and the residual action of invertible diagonal
matrices imply that i can be taken to be (1, . . . ,1)T , and then, again by
the stability condition, we must have (xi ,yi) 6= (xj ,yj) if i 6= j , i.e.
simultaneously diagonalisable B1,B2 correspond to n distinct points in
C2.
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Generally, two commuting matrices can be simultaneously made
upper-triangular:

B1 =

x1 . . . ∗
...

. . .
...

0 . . . xn

 , B2 =

y1 . . . ∗
...

. . .
...

0 . . . yn

 .

The Hilbert-Chow morphism X [n]→ SnX is given by

(B1,B2, i)→{(x1,y1), . . . ,(xn,yn)}.
The off-diagonal entries (with coords i, j such that (xi ,yi) = (xj ,yj))
correspond to (multi)-tangent directions. For example, the ideal I
corresponding to

B1 =

(
x α

0 x

)
, B2 =

(
y β

0 y

)
, i =

(
0
1

)
,

with (α,β) 6= (0,0) is generated by (z1− x)2, (z2− y)2, and
β(z1− x)−α(z2− y), i.e. I consists of f ∈ C[z1,z2] such that

f (x ,y) = 0,
(

α
∂f
∂z1

+ β
∂f
∂z2

)
(x ,y) = 0.
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Transverse Hilbert schemes

A construction due to Atiyah and Hitchin which often produces
complete hyperkähler metrics on open subsets of X [n].

Setting: X - complex manifold, C - 1-dimensional complex
manifold, π : X → C a surjective holomorphic map.

X [n]
π is an open subset of X [n] consisting of those Z ∈ X [n] such

that π∗OZ is a cyclic OC sheaf.

⇐⇒ π : Z → π(Z ) is an isomorphism onto its scheme-theoretic
image, i.e. dimOπ(Z) = n.

Locally, a nbhd of an t0 ∈ π(Z ) is of the form C[t]/(tm) for some
m ≤ n. Since π : Z → π(Z ) is an isomorphism, there exists a
φ : C[t]/(tm)→ X , the image of which is an open subset of Z . Such a
φ is an equivalence class of local sections of π, truncated up to order
m.
Let us call X [n]

π the Hilbert scheme of n points transverse to π.
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Affine case

Suppose that X ⊂ Ck is an affine variety and π : X → C is a restriction
of a polynomial. W.l.o.g. we can assume that π(w1, . . . ,wk ) = wk .

Then X [n]
π is an affine variety in Ckn: we identify Ckn with k -tuples of

polynomials
(
p1(z), . . . ,pk−1(z),q(z)

)
with degpi ≤ n−1 and q(z) a

monic polynomial of degree n. Let I be the defining ideal of X . Then
X [n]

π is defined by the equations:

∀f∈I f
(
p1(z), . . . ,pk−1(z),z

)
= 0 mod q(z).

Examples. 1) X = C∗×C and π - projection onto the second factor,
i.e. X = {(x ,y ,z) ∈ C3; xy = 1} and π(x ,y ,z) = z. According to the

above, X [n]
π consists of triples (x(z),y(z),q(z)) of polynomials with

degx ,degy ≤ n−1 and q a monic polynomial of degree n such that
x(z)y(z) = 1 mod q(z). In other words x(z) (or y(z)) does not

vanish at any of the roots of q(z) and, consequently, X [n]
π is isomorphic

to the space of based rational maps of degree n.
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2) X = C2 and π(x ,y) = xy . Recall the description of (C2)[n] as
{(B1,B2, i); . . .}/GLn(C). The ideal of π(Z ) consists of g ∈ C[z] such
that π∗g = 0, i.e. g(B1B2) = 0. We require dimOπ(Z) = n, which
means that B1B2 is a regular matrix.

Thus
(
C2
)[n]

π
consists of GL(n,C)-orbits of triples (B1,B2, i) as above

and such that B1B2 is a regular matrix. Every conjugacy class of
regular matrices contains a unique companion matrix S, i.e. a matrix
of the form Back

0 . . . 0 q0

1
. . . 0 q1

...
. . . . . .

...
0 . . . 1 qn−1

 . (1)

If B1B2 = S, then we can conjugate B1 and B2 by an element of the
centraliser of S in order to make the vector i equal to
e1 = (1,0, . . . ,0)T .

Thus
(
C2
)[n]

π
is isomorphic to the variety of triples (B1,B2,S) of n×n

matrices, such that S is of the form (1), B1,B2 commute, and B1B2 = S.
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3) Let X be the double cover of the Atiyah-Hitchin manifold, i.e. an
affine surface in C3 defined by the equation x2− zy2 = 1. Again, X [n]

π

is the variety of triples of polynomials x(z),y(z),q(z) of degrees
≤ n−1,≤ n−1 and n and q monic, such that x(z),y(z),z satisfy the
defining equation modulo q(z). Alternatively, consider the quadratic
extension z = u2, so that the defining equation becomes
(x + uy)(x−uy) = 1. If x(z) and y(z) are polynomials of degree
≤ n−1, then x(z)±uy(z) = x(u2)±uy(u2) and q(z) = q(u2). In
other words, q(u2) is a polynomial of degree 2n with all coefficients of
odd powers equal to 0 and p(u) = x(u2) + uy(u2) is a polynomial of
degree ≤ 2n−1 satisfying p(u)p(−u) = 1 at every root u of q(u2).

Thus X [n]
π is the space of degree 2n based rational maps of the form

p(u)/q(u2) with p satisfying the above condition. End

Hyperkähler metrics on X [n]
π ?

Atiyah-Hitchin: do the construction X 7→ X [n]
π on fibres of the twistor

space of X .
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Twistor spaces

Let X be a 4-dimensional hyperkähler manifold. Its twistor space Z
(diffeomorphic to X ×S2) is a complex 3-fold with a holomorphic
projection π : Z → P1 and an antiholomorphic involution τ : Z → Z
covering the antipodal map on P1. There is also an O(2)-valued
complex symplectic form ω along the fibres of π.
The manifold M and its hyperkähler structure are encoded in Z . In
particular, M corresponds to a connected component of the Kodaira
manifold of all τ-invariant sections of π with normal bundle
' O(1)⊕O(1). Each fibre of Z is biholomorphic to M with one of the
complex structures.

Examples: 1) X - flat R4 =⇒ Z = |O(1)⊕O(1)| (total space of a
vector bundle).
2) X = S1×R3 =⇒ Z = |Lc|\{0}, where Lc is a line bundle over TP1

with transition function exp{−cη/ζ} (here ζ is the affine coordinate on
P1\{0} and η the induced fibre coordinate on T

(
P1\{0}

)
).

3) X - R4 with the Taub-NUT metric =⇒
Z =

{
(x ,y ,z) ∈ (Lc(1)⊕L−c(1)

)
⊕O(2); xy = z

}
.
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Hyperkähler metrics on X [n]
π

X - 4-dimensional hyperkähler manifold; for each complex structure a
holomorphic map X → C =⇒ a holomorphic map p : Z → |O(2r)|,
r ≥ 1.
Apply the transverse Hilbert scheme construction fibrewise to get a
new twistor space Z [n]

p with all the properties of the twistor space of a
hyperkähler manifold except, perhaps, existence of sections of
Z [n]

p → P1 with correct normal bundle.

A section of Z [n]
p → P1 is the same as a curve C of degree n in O(2r)

together with a lift Ĉ to Z . The condition that the normal bundle of the
section is the sum of O(1)’s is equivalent to H∗

(
C,NĈ/Z (−2)

)
= 0

Examples 1) X = C∗×C, π(x ,z) = z =⇒ hK metric on the moduli
space of SU(2) monopoles of charge n. (Nahm’s equations!)
2) X - ALE space of type A or D (i.e. surfaces xy = zk+1 + . . . ,
x2− zy2 = zn−1 + . . . ), π(x ,y ,z) = z. Then X [n]

π (with a bound on n)
carries a complete hK metric (Manolescu for A2d , Jackson - others).
These can be realised as quiver varieties or again, as moduli spaces
of solutions to Nahm’s equations.
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3) X - flat C2, π(x ,y) = xy . Then Z = |O(1)⊕O(1)|= P3\P1 and

p : Z → |O(2)|. There are no sections! A section of Z [n]
p → P1 is a

curve of degree n in |O(2)| together with a lift to P3\P1, i.e. a space
curve of degree n and genus (n−1)2 - impossible by a result of
Hartshorne.
4) X - C2 with the Taub-NUT metric, π(x ,y) = xy . This time yes: the

fibrewise twistor construction produces a complete hK metric on X [n]
π

(-, 2015).

Recall that
(
C2
)[n]

π
is isomorphic to the variety of triples (B1,B2,S) of

n×n matrices, such that S is of the form (1), B1,B2 commute, and
B1B2 = S. We can find a moduli space of solutions to Nahm’s
equations, biholomorphic to this variety.
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g - Lie algebra of a compact group G.
Nahm’s equations are ODE for quadruples of g-valued smooth
functions Ti(t), i = 0,1,2,3:

Ṫ1 + [T0,T1] = [T2,T3]

and two further equations given by cyclic permutations of indices
1,2,3.
We are interested in solutions on (0,1] such that T0 is smooth at t = 0
and Ti(t) = αi/t + smooth, i = 1,2,3, where α1,α2,α3 is an
su(2)-triple in g.
The group of smooth gauge transformations g(t) on [0,1] with
g(0) = g(1) = 1 acts on the set of solutions and the resulting moduli
space has a natural complete hyperkähler metric.
With respect to any complex structure, say I, this manifold is
biholomorphic to S(f )×GC where S(f ) is the Slodowy slice to the
nilpotent adjoint orbit of f = α2 + iα3, i.e. S(f ) = f + Z (f ∗). For
example, if G = U(n) and f is the standard nilpotent element of rank
n−1, then S(f ) is the set of matrices of the form: F
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The group G acts isometrically and triholomorphically on S(f )×GC,
and so, if M is any other hyperkähler manifold with a hyperkähler
G-action, then we can form hyperkähler quotients of M×S(f )×GC by
the diagonal G-action.
The nice thing is that the complex structures of these quotients are
easily identified (under mild assumptions):
if µ : M→ gC is the complex moment map for the GC-action on M,
then this hyperkähler quotient is biholomorphic to µ−1

(
S(f )

)
.

Examples: 1) G = U(n), f a regular nilpotent element, M - second
copy of S(f )×GC: get the moduli space of SU(2)-monopoles of
charge n.
2) g of type A,D or E , f a subregular nilpotent orbit, M a regular
semisimple adjoint orbit of GC with its Kronheimer’s metric: get the
ALE-spaces of type A,D or E .
3) g and M as above of type A or D, f - more general: get the
transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith,
Manolescu, Jackson).
4) G = SU(2)×SU(k−2), f - regular nilpotent, M - regular
semisimple orbit of SL(k ,C): get the ALF-spaces of type Dk

(Cherkis-Kapustin).
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I claim that the transverse Hilbert scheme of n points on Taub-NUT (as
a hyperkähler manifold) is obtained this way for G = U(n)×U(n), f - a
regular nilpotent element, and M = T ∗Matn,n(C).
We can identify M with pairs B1,B2 of complex matrices; then the two
gl(n,C)-valued moment maps are given by B1B2 and B2B1. Thus the
transverse Hilbert scheme is the set of (B1,B2) such that B1B2 and
B2B1 is a companion matrix. It follows that this is the same companion
matrix and we obtain (C2)

[n]
π . F

The transverse Hilbert schemes of points on the D0,D1,D2-surfaces
arise this way for G = U(n), f - a regular nilpotent element, and M
product of two minimal semisimple adjoint orbits.
For the D0− and D1-surface there is an alternative description, as a
hyperkähler submanifold of the moduli space of magnetic
SU(2)-monopoles of charge 2n for D0 and charge 2n + 1 for D1. D
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