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Hilbert schemes of points

Let X be a complex manifold.

The Hibert scheme X[ of n points on X parameterises ideals
I C Ox such that Ox/ I has 0-dimensional support and
dimH°(Ox/1) = n.

It is a partial resolution of singularities of the symmetric power
S"X =X"/¥,.

X[l'is the blow-up of the diagonal in $2X = X[? is always
smooth.

If dimc X = 2, then X[l is smooth for each n (Fogarty).

If dimc X = 2 and X has a complex symplectic form , then X"l
has a canonical complex symplectic form ol (Beauville).
— (together with the Calabi-Yau them) if X is a compact

Ricci-flat Kahler complex surface, then xl'is hyperkahler for
each n.

What about noncompact X? True for ALE spaces (i.e. X[ is
hyperkahler) (Nakajima, quiver varieties)
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A toy example

X = C2. Nakajima describes (C?)[") as follows:

it is the manifold of triples (B, Bz, i) € Mat,, ,(C) x Mat,, ,(C) x C"
such that [B;, Bo] = 0 and there is no proper subspace S of C” such
thati€ S, BiS C S, B,S C S, modulo the GL(n,C)-action
(conjugation on Mat,, ,(C), standard on C").

The correspondence between such an orbit and an ideal of colength n
in C[z1, z,] is given by

(B17B2,i) — = {fe (C[Z1,Zg];f(B17BZ)i:O}'

For example, assume that By and B, are simultaneously
diagonalisable: By = diag(x1, ..., Xn), Bo =diag(ys,...,¥n). The
stability condition and the residual action of invertible diagonal
matrices imply that / can be taken to be (1,...,1)", and then, again by
the stability condition, we must have (x;,y;) # (x;, ;) if i # J, i.e.
simultaneously diagonalisable By, B> correspond to n distinct points in
C2.



Generally, two commuting matrices can be simultaneously made
upper-triangular:

Xy ... % Vioo... %
Bi=1: . |, B=|: .
0 ... Xxp 0 ... ¥
The Hilbert-Chow morphism X"l — S"X is given by
(B1,B2,i) = {(x1,1), -+ (Xn, ¥n) }-



Generally, two commuting matrices can be simultaneously made
upper-triangular:
X{ ...k Yioo... Ok
Bi=|: . |, B=]:" " !
0 ... Xxp 0 ... ¥
The Hilbert-Chow morphism X"l — S"X is given by

(BhBZai) — {(X1a}’1),"-a(xna}/n)}'

The off-diagonal entries (with coords i,j such that (x;, ;) = (X}, ;))
correspond to (multi)-tangent directions. For example, the ideal /
corresponding to

(s Ym0 ()

with (a, B) # (0,0) is generated by (z; — x)?, (z2 — y)?, and
B(zy —x) —a(zz2 — y), i.e. I consists of f € C|[zy, 2] such that

of of
) =0, (og By ) (xy) =0
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Transverse Hilbert schemes

@ A construction due to Atiyah and Hitchin which often produces
complete hyperkahler metrics on open subsets of Xl
@ Setting: X - complex manifold, C - 1-dimensional complex
manifold, T : X — C a surjective holomorphic map.
° X,[t"] is an open subset of X["l consisting of those Z € X!" such
that . Oz is a cyclic O¢ sheaf.
@ < m:Z— m(Z)is an isomorphism onto its scheme-theoretic
image, i.e. dim Oy(z) = n.
Locally, a nbhd of an t, € n(Z) is of the form C[t]/(t™) for some
m < n. Since © : Z — m(Z) is an isomorphism, there exists a
¢ : C[t]/(t™) — X, the image of which is an open subset of Z. Such a
¢ is an equivalence class of local sections of &, truncated up to order

Let us call X,L"] the Hilbert scheme of n points transverse to 7.
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Suppose that X C C¥ is an affine variety and 7t : X — C is a restriction
of a polynomial. W.l.o.g. we can assume that w(wy, ..., wx) = w.
Then X" is an affine variety in C¥: we identify C*” with k-tuples of

polynomials (p1(z),...,pxk—1(2),q(2)) with degp; < n—1 and g(z) a
monic polynomial of degree n. Let / be the defining ideal of X. Then

XT[E"] is defined by the equations:

Vier f(p1(2),....pk-1(2),z) =0  mod q(z).

Examples. 1) X = C* x C and 7 - projection onto the second factor,
i.e. X ={(x,y,2z) € C3; xy =1} and (x, y, z) = z. According to the
above, X,[;"] consists of triples (x(z),y(z),q(z)) of polynomials with
deg x,degy < n—1 and q a monic polynomial of degree n such that
x(2)y(z) =1 mod g(z). In other words x(z) (or y(z)) does not
vanish at any of the roots of g(z) and, consequently, X,[t"] is isomorphic
to the space of based rational maps of degree n.
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{(By,Bz,i);...}/GLs(C). The ideal of ©(Z) consists of g € C|[z] such
that t°g = 0, i.e. g(ByBz) = 0. We require dim Oy(z) = n, which
means that B; B- is a regular matrix.
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2) X = C2? and nt(x, y) = xy. Recall the description of (C?)[" as
{(By,Bz,i);...}/GLs(C). The ideal of ©(Z) consists of g € C|[z] such
that t°g = 0, i.e. g(ByBz) = 0. We require dim Oy(z) = n, which
means that B; B- is a regular matrix.

Thus (CZ)L"] consists of GL(n,C)-orbits of triples (By, B, i) as above
and such that By B, is a regular matrix. Every conjugacy class of
regular matrices contains a unique companion matrix S, i.e. a matrix
of the form

o ... 1 an—1

If BiB, = S, then we can conjugate By and B, by an element of the
centraliser of S in order to make the vector i equal to

e; =(1,0,...,0)".

Thus ((CZ)Ln] is isomorphic to the variety of triples (B, Bz, S) of nx n
matrices, such that S is of the form (1), By,B> commute, and B1B, = S.



3) Let X be the double cover of the Atiyah-Hitchin manifold, i.e. an
affine surface in C? defined by the equation x? — zy? = 1. Again, peil
is the variety of triples of polynomials x(z), y(z), q(z) of degrees
<n-—1,<n—1and nand g monic, such that x(z), y(z), z satisfy the
defining equation modulo g(z). Alternatively, consider the quadratic
extension z = u?, so that the defining equation becomes

(x4 uy)(x —uy) =1.If x(z) and y(z) are polynomials of degree

< n—1,then x(z2) & uy(z) = x(v?) & uy(v?) and g(z) = g(u?). In
other words, g(u?) is a polynomial of degree 2n with all coefficients of
odd powers equal to 0 and p(u) = x(u?) + uy(u?) is a polynomial of
degree < 2n— 1 satisfying p(u)p(—u) = 1 at every root u of g(u?).
Thus XT[E"] is the space of degree 2n based rational maps of the form
p(u)/q(u?) with p satisfying the above condition.
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affine surface in C? defined by the equation x? — zy? = 1. Again, peil
is the variety of triples of polynomials x(z), y(z), q(z) of degrees
<n—1,<n—1and nand g monic, such that x(z), y(z), z satisfy the
defining equation modulo g(z). Alternatively, consider the quadratic
extension z = u?, so that the defining equation becomes

(x4 uy)(x —uy) =1.If x(z) and y(z) are polynomials of degree

< n—1,then x(z2) & uy(z) = x(v?) & uy(v?) and g(z) = g(u?). In
other words, g(u?) is a polynomial of degree 2n with all coefficients of
odd powers equal to 0 and p(u) = x(u?) + uy(u?) is a polynomial of
degree < 2n— 1 satisfying p(u)p(—u) = 1 at every root u of g(u?).
Thus XT[E"] is the space of degree 2n based rational maps of the form
p(u)/q(u?) with p satisfying the above condition.

Hyperkéhler metrics on X,[;"]?
Atiyah-Hitchin: do the construction X — X,[E”] on fibres of the twistor
space of X.
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projection 7t : Z — P! and an antiholomorphic involution T: Z — Z
covering the antipodal map on P'. There is also an O(2)-valued
complex symplectic form ® along the fibres of 7.
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Twistor spaces

Let X be a 4-dimensional hyperkahler manifold. Its twistor space Z
(diffeomorphic to X x S?) is a complex 3-fold with a holomorphic
projection 7t : Z — P! and an antiholomorphic involution T: Z — Z
covering the antipodal map on P'. There is also an 0(2)-valued
complex symplectic form ® along the fibres of 7.

The manifold M and its hyperkahler structure are encoded in Z. In
particular, M corresponds to a connected component of the Kodaira
manifold of all T-invariant sections of © with normal bundle

~ O(1) & O(1). Each fibre of Z is biholomorphic to M with one of the
complex structures.

Examples: 1) X - flat R* = Z =|0(1) @ O(1)| (total space of a
vector bundle).

2) X=8"xR® = Z=|L°\{0}, where LC is aline bundle over TP'
with transition function exp{—cn/{} (here C is the affine coordinate on
P"\{0} and 1 the induced fibre coordinate on T (P"\{0})).

3) X - R* with the Taub-NUT metric —>

Z={(x,y,z) e (L°()@ L °(1)) ® O(2); xy = z}.
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Hyperk&hler metrics on X5

X - 4-dimensional hyperkahler manifold; for each complex structure a
holomorphic map X — C = a holomorphic map p: Z — |O(2r)
r>1.

Apply the transverse Hilbert scheme construction fibrewise to get a
new twistor space Z,E”] with all the properties of the twistor space of a
hyperkahler manifold except, perhaps, existence of sections of

z!" — ' with correct normal bundle.

’

A section of ZF[,"] — " is the same as a curve C of degree nin O(2r)
together with a lift C to Z. The condition that the normal bundle of the
section is the sum of O(1)’s is equivalent to H*(C, N, ,(—2)) =0
Examples 1) X = C* x C, n(x,z) = z = hK metric on the moduli
space of SU(2) monopoles of charge n. (Nahm’s equations!)

2) X - ALE space of type A or D (i.e. surfaces xy = z/+1 + ...,

X2 —zy? =21 4. ), m(x,y,z) = z. Then XL (with a bound on n)
carries a complete hK metric (Manolescu for Axy, Jackson - others).
These can be realised as quiver varieties or again, as moduli spaces
of solutions to Nahm’s equations.



3) X -flat C2, nt(x,y) = xy. Then Z = |O(1) ® O(1)| = P*\ P! and
p:Z — |O(2)|. There are no sections! A section of Z,C[,"] —Plisa
curve of degree nin |O(2)] together with a lift to P*\P', i.e. a space
curve of degree n and genus (n— 1)? - impossible by a result of
Hartshorne.
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4) X - C? with the Taub-NUT metric, t(x,y) = xy. This time yes: the
fibrewise twistor construction produces a complete hK metric on X,L"]
(-, 2015).



3) X - flat C2, nt(x,y) = xy. Then Z =|0(1) ® O(1)| = P*\P' and
p:Z — |0(2)|. There are no sections! A section of z,L”] —Plisa
curve of degree nin |O(2)] together with a lift to P*\P', i.e. a space
curve of degree n and genus (n— 1)? - impossible by a result of
Hartshorne.

4) X - C? with the Taub-NUT metric, t(x,y) = xy. This time yes: the
fibrewise twistor construction produces a complete hK metric on x,£”]
(-, 2015).

Recall that ((CZ)L"] is isomorphic to the variety of triples (By, Bz, S) of
n x n matrices, such that S is of the form (1), By,B> commute, and
B:B, = S. We can find a moduli space of solutions to Nahm’s
equations, biholomorphic to this variety.



g - Lie algebra of a compact group G.
Nahm’s equations are ODE for quadruples of g-valued smooth
functions T;(t), i =0,1,2,3:

T4 [To, T1] = [Tz, Ts]

and two further equations given by cyclic permutations of indices
1,2,3.

We are interested in solutions on (0, 1] such that Ty is smooth at t = 0
and Ti(t) = o;/t+smooth, i = 1,2,3, where o, 0o, 03 is an
su(2)-triple in g.
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9(0) = g(1) = 1 acts on the set of solutions and the resulting moduli
space has a natural complete hyperkahler metric.



g - Lie algebra of a compact group G.
Nahm’s equations are ODE for quadruples of g-valued smooth
functions T;(t), i =0,1,2,3:

Ty +[To, Ti] = [T, Ts]

and two further equations given by cyclic permutations of indices
1,2,3.

We are interested in solutions on (0, 1] such that Ty is smooth at t = 0
and Ti(t) = o;/t+smooth, i = 1,2,3, where o, 0o, 03 is an
su(2)-triple in g.

The group of smooth gauge transformations g(t) on [0, 1] with

9(0) = g(1) = 1 acts on the set of solutions and the resulting moduli
space has a natural complete hyperkahler metric.

With respect to any complex structure, say /, this manifold is
biholomorphic to S(f) x G© where S(f) is the Slodowy slice to the
nilpotent adjoint orbit of f = o, + io, i.e. S(f) = f+ Z(f*). For
example, if G = U(n) and f is the standard nilpotent element of rank
n—1, then S(f) is the set of matrices of the form:



The group G acts isometrically and trinolomorphically on S(f) x G®,
and so, if M is any other hyperkahler manifold with a hyperkahler
G-action, then we can form hyperkahler quotients of M x S(f) x G* by
the diagonal G-action.



The group G acts isometrically and trinolomorphically on S(f) x G®,
and so, if M is any other hyperkahler manifold with a hyperkahler
G-action, then we can form hyperkahler quotients of M x S(f) x G* by
the diagonal G-action.

The nice thing is that the complex structures of these quotients are
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a hyperkahler manifold) is obtained this way for G = U(n) x U(n), f - a
regular nilpotent element, and M = T*Mat, ,(C).

We can identify M with pairs By, By of complex matrices; then the two
g[(n, C)-valued moment maps are given by B; B, and B,Bj;. Thus the
transverse Hilbert scheme is the set of (B;, Bz) such that B; B, and
BBy is a companion matrix. It follows that this is the same companion
matrix and we obtain (C2)L.

The transverse Hilbert schemes of points on the Dy, D1, D»>-surfaces
arise this way for G = U(n), f - a regular nilpotent element, and M
product of two minimal semisimple adjoint orbits.

For the Dy— and Dj-surface there is an alternative description, as a
hyperkahler submanifold of the moduli space of magnetic
SU(2)-monopoles of charge 2n for Dy and charge 2n+ 1 for D;.



