Nahm's equations and transverse Hilbert schemes

Roger Bielawski Leibniz Universität Hannover

SiGT Waseda University, November 28, 2016

- The Hibert scheme $X^{[n]}$ of *n* points on *X* parameterises ideals $I \subset O_X$ such that O_X/I has 0-dimensional support and dim $H^0(O_X/I) = n$.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each n (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each n (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each n (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each n (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each *n* (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- → (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each *n* (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- → (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

- The Hibert scheme X^[n] of n points on X parameterises ideals *I* ⊂ O_X such that O_X/*I* has 0-dimensional support and dim H⁰(O_X/*I*) = n.
- It is a partial resolution of singularities of the symmetric power $S^n X = X^n / \Sigma_n$.
- X^[2] is the blow-up of the diagonal in S²X ⇒ X^[2] is always smooth.
- If dim_C X = 2, then $X^{[n]}$ is smooth for each *n* (Fogarty).
- If dim_C X = 2 and X has a complex symplectic form ω, then X^[n] has a canonical complex symplectic form ω^[n] (Beauville).
- (together with the Calabi-Yau them) if X is a compact Ricci-flat Kähler complex surface, then X^[n] is hyperkähler for each n.
- What about noncompact X? True for ALE spaces (i.e. X^[n] is hyperkähler) (Nakajima, quiver varieties)

A toy example

 $X = \mathbb{C}^2$. Nakajima describes $(\mathbb{C}^2)^{[n]}$ as follows: it is the manifold of triples $(B_1, B_2, i) \in \operatorname{Mat}_{n,n}(\mathbb{C}) \times \operatorname{Mat}_{n,n}(\mathbb{C}) \times \mathbb{C}^n$ such that $[B_1, B_2] = 0$ and there is no proper subspace *S* of \mathbb{C}^n such that $i \in S$, $B_1 S \subset S$, $B_2 S \subset S$, **modulo** the $GL(n, \mathbb{C})$ -action (conjugation on $\operatorname{Mat}_{n,n}(\mathbb{C})$, standard on \mathbb{C}^n).

The correspondence between such an orbit and an ideal of colength n in $\mathbb{C}[z_1, z_2]$ is given by

 $(B_1, B_2, i) \mapsto l = \{ f \in \mathbb{C}[z_1, z_2]; f(B_1, B_2)i = 0 \}.$

For example, assume that B_1 and B_2 are simultaneously diagonalisable: $B_1 = \text{diag}(x_1, \dots, x_n)$, $B_2 = \text{diag}(y_1, \dots, y_n)$. The stability condition and the residual action of invertible diagonal matrices imply that *i* can be taken to be $(1, \dots, 1)^T$, and then, again by the stability condition, we must have $(x_i, y_i) \neq (x_j, y_j)$ if $i \neq j$, i.e. simultaneously diagonalisable B_1, B_2 correspond to *n* distinct points in \mathbb{C}^2 .

A toy example

 $X = \mathbb{C}^2$. Nakajima describes $(\mathbb{C}^2)^{[n]}$ as follows:

it is the manifold of triples $(B_1, B_2, i) \in Mat_{n,n}(\mathbb{C}) \times Mat_{n,n}(\mathbb{C}) \times \mathbb{C}^n$ such that $[B_1, B_2] = 0$ and there is no proper subspace *S* of \mathbb{C}^n such that $i \in S$, $B_1 S \subset S$, $B_2 S \subset S$, **modulo** the $GL(n, \mathbb{C})$ -action (conjugation on $Mat_{n,n}(\mathbb{C})$, standard on \mathbb{C}^n).

The correspondence between such an orbit and an ideal of colength *n* in $\mathbb{C}[z_1, z_2]$ is given by

$(B_1, B_2, i) \mapsto I = \{f \in \mathbb{C}[z_1, z_2]; f(B_1, B_2)i = 0\}.$

For example, assume that B_1 and B_2 are simultaneously diagonalisable: $B_1 = \text{diag}(x_1, \dots, x_n)$, $B_2 = \text{diag}(y_1, \dots, y_n)$. The stability condition and the residual action of invertible diagonal matrices imply that *i* can be taken to be $(1, \dots, 1)^T$, and then, again by the stability condition, we must have $(x_i, y_i) \neq (x_j, y_j)$ if $i \neq j$, i.e. simultaneously diagonalisable B_1, B_2 correspond to *n* distinct points in \mathbb{C}^2 .

A toy example

 $X = \mathbb{C}^2$. Nakajima describes $(\mathbb{C}^2)^{[n]}$ as follows:

it is the manifold of triples $(B_1, B_2, i) \in Mat_{n,n}(\mathbb{C}) \times Mat_{n,n}(\mathbb{C}) \times \mathbb{C}^n$ such that $[B_1, B_2] = 0$ and there is no proper subspace *S* of \mathbb{C}^n such that $i \in S$, $B_1 S \subset S$, $B_2 S \subset S$, **modulo** the $GL(n, \mathbb{C})$ -action (conjugation on $Mat_{n,n}(\mathbb{C})$, standard on \mathbb{C}^n).

The correspondence between such an orbit and an ideal of colength *n* in $\mathbb{C}[z_1, z_2]$ is given by

 $(B_1, B_2, i) \mapsto I = \{f \in \mathbb{C}[z_1, z_2]; f(B_1, B_2)i = 0\}.$

For example, assume that B_1 and B_2 are simultaneously diagonalisable: $B_1 = \text{diag}(x_1, \dots, x_n)$, $B_2 = \text{diag}(y_1, \dots, y_n)$. The stability condition and the residual action of invertible diagonal matrices imply that *i* can be taken to be $(1, \dots, 1)^T$, and then, again by the stability condition, we must have $(x_i, y_i) \neq (x_j, y_j)$ if $i \neq j$, i.e. simultaneously diagonalisable B_1, B_2 correspond to *n* distinct points in \mathbb{C}^2 . Generally, two commuting matrices can be simultaneously made upper-triangular:

$$B_1 = \begin{pmatrix} x_1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & x_n \end{pmatrix}, \quad B_2 = \begin{pmatrix} y_1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & y_n \end{pmatrix}.$$

The Hilbert-Chow morphism $X^{[n]} \rightarrow S^n X$ is given by

 $(B_1, B_2, i) \rightarrow \{(x_1, y_1), \ldots, (x_n, y_n)\}.$

The off-diagonal entries (with coords *i*, *j* such that $(x_i, y_i) = (x_j, y_j)$) correspond to (multi)-tangent directions. For example, the ideal *l* corresponding to

$$B_1 = \begin{pmatrix} x & \alpha \\ 0 & x \end{pmatrix}, \ B_2 = \begin{pmatrix} y & \beta \\ 0 & y \end{pmatrix}, \ i = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

with $(\alpha, \beta) \neq (0, 0)$ is generated by $(z_1 - x)^2$, $(z_2 - y)^2$, and $\beta(z_1 - x) - \alpha(z_2 - y)$, i.e. *I* consists of $f \in \mathbb{C}[z_1, z_2]$ such that

$$f(x,y) = 0, \quad \left(\alpha \frac{\partial f}{\partial z_1} + \beta \frac{\partial f}{\partial z_2}\right)(x,y) = 0.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Generally, two commuting matrices can be simultaneously made upper-triangular:

$$B_1 = \begin{pmatrix} x_1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & x_n \end{pmatrix}, \quad B_2 = \begin{pmatrix} y_1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & y_n \end{pmatrix}.$$

The Hilbert-Chow morphism $X^{[n]} \rightarrow S^n X$ is given by

 $(B_1, B_2, i) \to \{(x_1, y_1), \ldots, (x_n, y_n)\}.$

The off-diagonal entries (with coords i, j such that $(x_i, y_i) = (x_j, y_j)$) correspond to (multi)-tangent directions. For example, the ideal I corresponding to

$$B_1 = \begin{pmatrix} x & \alpha \\ 0 & x \end{pmatrix}, \ B_2 = \begin{pmatrix} y & \beta \\ 0 & y \end{pmatrix}, \ i = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

with $(\alpha, \beta) \neq (0, 0)$ is generated by $(z_1 - x)^2$, $(z_2 - y)^2$, and $\beta(z_1 - x) - \alpha(z_2 - y)$, i.e. *I* consists of $f \in \mathbb{C}[z_1, z_2]$ such that f(x, y) = 0, $\left(\alpha \frac{\partial f}{\partial z_1} + \beta \frac{\partial f}{\partial z_2}\right)(x, y) = 0$.

・ロト・4回ト・モート・モー うへぐ

- A construction due to Atiyah and Hitchin which often produces complete hyperkähler metrics on open subsets of X^[n].
- Setting: X complex manifold, C 1-dimensional complex manifold, π : X → C a surjective holomorphic map.
- X_π^[n] is an open subset of X^[n] consisting of those Z ∈ X^[n] such that π_{*} O_Z is a cyclic O_C sheaf.
- ⇐⇒ π: Z → π(Z) is an isomorphism onto its scheme-theoretic image, i.e. dim O_{π(Z)} = n.

Locally, a nbhd of an $t_0 \in \pi(Z)$ is of the form $\mathbb{C}[t]/(t^m)$ for some $m \le n$. Since $\pi : Z \to \pi(Z)$ is an isomorphism, there exists a $\phi : \mathbb{C}[t]/(t^m) \to X$, the image of which is an open subset of *Z*. Such a ϕ is an equivalence class of local sections of π , truncated up to order *m*.

Let us call $X_{\pi}^{[n]}$ the Hilbert scheme of *n* points transverse to π .

- A construction due to Atiyah and Hitchin which often produces complete hyperkähler metrics on open subsets of X^[n].
- Setting: X complex manifold, C 1-dimensional complex manifold, π : X → C a surjective holomorphic map.
- X_π^[n] is an open subset of X^[n] consisting of those Z ∈ X^[n] such that π_{*} O_Z is a cyclic O_C sheaf.
- ⇐⇒ π : Z → π(Z) is an isomorphism onto its scheme-theoretic image, i.e. dim O_{π(Z)} = n.

Locally, a nbhd of an $t_0 \in \pi(Z)$ is of the form $\mathbb{C}[t]/(t^m)$ for some $m \le n$. Since $\pi : Z \to \pi(Z)$ is an isomorphism, there exists a $\phi : \mathbb{C}[t]/(t^m) \to X$, the image of which is an open subset of Z. Such a ϕ is an equivalence class of local sections of π , truncated up to order m.

Let us call $X_{\pi}^{[n]}$ the Hilbert scheme of *n* points transverse to π .

- A construction due to Atiyah and Hitchin which often produces complete hyperkähler metrics on open subsets of X^[n].
- Setting: X complex manifold, C 1-dimensional complex manifold, π : X → C a surjective holomorphic map.
- X_π^[n] is an open subset of X^[n] consisting of those Z ∈ X^[n] such that π_{*} O_Z is a cyclic O_C sheaf.
- ⇐⇒ π : Z → π(Z) is an isomorphism onto its scheme-theoretic image, i.e. dim O_{π(Z)} = n.

Locally, a nbhd of an $t_0 \in \pi(Z)$ is of the form $\mathbb{C}[t]/(t^m)$ for some $m \leq n$. Since $\pi : Z \to \pi(Z)$ is an isomorphism, there exists a $\phi : \mathbb{C}[t]/(t^m) \to X$, the image of which is an open subset of Z. Such a ϕ is an equivalence class of local sections of π , truncated up to order *m*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let us call $X_{\pi}^{[1]}$ the Hilbert scheme of *n* points transverse to π .

- A construction due to Atiyah and Hitchin which often produces complete hyperkähler metrics on open subsets of X^[n].
- Setting: X complex manifold, C 1-dimensional complex manifold, π : X → C a surjective holomorphic map.
- X_π^[n] is an open subset of X^[n] consisting of those Z ∈ X^[n] such that π_{*} O_Z is a cyclic O_C sheaf.
- ⇐⇒ π : Z → π(Z) is an isomorphism onto its scheme-theoretic image, i.e. dim O_{π(Z)} = n.

Locally, a nbhd of an $t_0 \in \pi(Z)$ is of the form $\mathbb{C}[t]/(t^m)$ for some $m \le n$. Since $\pi : Z \to \pi(Z)$ is an isomorphism, there exists a $\phi : \mathbb{C}[t]/(t^m) \to X$, the image of which is an open subset of Z. Such a ϕ is an equivalence class of local sections of π , truncated up to order m.

Let us call $X_{\pi}^{[n]}$ the Hilbert scheme of *n* points transverse to π .

Affine case

Suppose that $X \subset \mathbb{C}^k$ is an affine variety and $\pi : X \to \mathbb{C}$ is a restriction of a polynomial. W.I.o.g. we can assume that $\pi(w_1, \ldots, w_k) = w_k$. Then $X_k^{(n)}$ is an affine variety in $\mathbb{C}^{(n)}$: we identify $\mathbb{C}^{(n)}$ with *k*-tuples of polynomials $(p_1(z), \ldots, p_{k-1}(z), q(z))$ with deg $p_1 \leq n-1$ and q(z) a monic polynomial of degree *n*. Let *i* be the defining ideal of *X*. Then $X_k^{(n)}$ is defined by the equations:

 $\forall_{t\in I} \quad f(p_1(z),\ldots,p_{k-1}(z),z)=0 \quad \mod q(z).$

Examples. 1) $X = \mathbb{C}^* \times \mathbb{C}$ and π - projection onto the second factor, i.e. $X = \{(x, y, z) \in \mathbb{C}^3; xy = 1\}$ and $\pi(x, y, z) = z$. According to the above, $X_{\pi}^{[n]}$ consists of triples (x(z), y(z), q(z)) of polynomials with deg x, deg $y \le n-1$ and q a monic polynomial of degree n such that $x(z)y(z) = 1 \mod q(z)$. In other words x(z) (or y(z)) does not vanish at any of the roots of q(z) and, consequently, $X_{\pi}^{[n]}$ is isomorphic to the space of based rational maps of degree n.

Affine case

Suppose that $X \subset \mathbb{C}^k$ is an affine variety and $\pi : X \to \mathbb{C}$ is a restriction of a polynomial. W.l.o.g. we can assume that $\pi(w_1, \ldots, w_k) = w_k$. Then $X_{\pi}^{[n]}$ is an affine variety in \mathbb{C}^{kn} : we identify \mathbb{C}^{kn} with *k*-tuples of polynomials $(p_1(z), \ldots, p_{k-1}(z), q(z))$ with deg $p_i \leq n-1$ and q(z) a monic polynomial of degree *n*. Let *I* be the defining ideal of *X*. Then $X_{\pi}^{[n]}$ is defined by the equations:

 $\forall_{f\in I} \quad f(p_1(z),\ldots,p_{k-1}(z),z)=0 \mod q(z).$

Examples. 1) $X = \mathbb{C}^* \times \mathbb{C}$ and π - projection onto the second factor, i.e. $X = \{(x, y, z) \in \mathbb{C}^3; xy = 1\}$ and $\pi(x, y, z) = z$. According to the above, $X_{\pi}^{[n]}$ consists of triples (x(z), y(z), q(z)) of polynomials with deg x, deg $y \le n-1$ and q a monic polynomial of degree n such that $x(z)y(z) = 1 \mod q(z)$. In other words x(z) (or y(z)) does not vanish at any of the roots of q(z) and, consequently, $X_{\pi}^{[n]}$ is isomorphic to the space of based rational maps of degree n.

Affine case

Suppose that $X \subset \mathbb{C}^k$ is an affine variety and $\pi : X \to \mathbb{C}$ is a restriction of a polynomial. W.l.o.g. we can assume that $\pi(w_1, \ldots, w_k) = w_k$. Then $X_{\pi}^{[n]}$ is an affine variety in \mathbb{C}^{kn} : we identify \mathbb{C}^{kn} with *k*-tuples of polynomials $(p_1(z), \ldots, p_{k-1}(z), q(z))$ with deg $p_i \leq n-1$ and q(z) a monic polynomial of degree *n*. Let *I* be the defining ideal of *X*. Then $X_{\pi}^{[n]}$ is defined by the equations:

 $\forall_{f\in I} \quad f(p_1(z),\ldots,p_{k-1}(z),z)=0 \mod q(z).$

Examples. 1) $X = \mathbb{C}^* \times \mathbb{C}$ and π - projection onto the second factor, i.e. $X = \{(x, y, z) \in \mathbb{C}^3; xy = 1\}$ and $\pi(x, y, z) = z$. According to the above, $X_{\pi}^{[n]}$ consists of triples (x(z), y(z), q(z)) of polynomials with deg x, deg $y \le n-1$ and q a monic polynomial of degree n such that $x(z)y(z) = 1 \mod q(z)$. In other words x(z) (or y(z)) does not vanish at any of the roots of q(z) and, consequently, $X_{\pi}^{[n]}$ is isomorphic to the space of based rational maps of degree n. 2) $X = \mathbb{C}^2$ and $\pi(x, y) = xy$. Recall the description of $(\mathbb{C}^2)^{[n]}$ as $\{(B_1, B_2, i); \dots\}/GL_n(\mathbb{C})$. The ideal of $\pi(Z)$ consists of $g \in \mathbb{C}[z]$ such that $\pi^*g = 0$, i.e. $g(B_1B_2) = 0$. We require dim $\mathcal{O}_{\pi(Z)} = n$, which means that B_1B_2 is a regular matrix.

Thus $(\mathbb{C}^2)_{\pi}^{(n)}$ consists of $GL(n, \mathbb{C})$ -orbits of triples (B_1, B_2, i) as above and such that B_1B_2 is a regular matrix. Every conjugacy class of regular matrices contains a unique companion matrix S, i.e. a matrix of the form

$$\begin{pmatrix} 0 & \dots & 0 & q_0 \\ 1 & \ddots & 0 & q_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & q_{n-1} \end{pmatrix}.$$
 (1)

If $B_1B_2 = S$, then we can conjugate B_1 and B_2 by an element of the centraliser of S in order to make the vector i equal to $e_1 = (1, 0, ..., 0)^T$. Thus $(\mathbb{C}^2)_{\pi}^{[n]}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that S is of the form (1), B_1, B_2 compute and $B_1B_2 = S$. 2) $X = \mathbb{C}^2$ and $\pi(x, y) = xy$. Recall the description of $(\mathbb{C}^2)^{[n]}$ as $\{(B_1, B_2, i); \dots\}/GL_n(\mathbb{C})$. The ideal of $\pi(Z)$ consists of $g \in \mathbb{C}[z]$ such that $\pi^*g = 0$, i.e. $g(B_1B_2) = 0$. We require dim $\mathcal{O}_{\pi(Z)} = n$, which means that B_1B_2 is a regular matrix. Thus $(\mathbb{C}^2)^{[n]}_{\pi}$ consists of $GL(n, \mathbb{C})$ -orbits of triples (B_1, B_2, i) as above and such that B_1B_2 is a regular matrix. Every conjugacy class of regular matrices contains a unique companion matrix S, i.e. a matrix of the form

$$\begin{pmatrix} 0 & \dots & 0 & q_0 \\ 1 & \ddots & 0 & q_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & q_{n-1} \end{pmatrix}.$$
 (1)

If $B_1B_2 = S$, then we can conjugate B_1 and B_2 by an element of the centraliser of S in order to make the vector i equal to $e_1 = (1, 0, ..., 0)^T$. Thus $(\mathbb{C}^2)_{\pi}^{[n]}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that S is of the form (1), B_1, B_2 compute and $B_1B_2 = S$. 2) $X = \mathbb{C}^2$ and $\pi(x, y) = xy$. Recall the description of $(\mathbb{C}^2)^{[n]}$ as $\{(B_1, B_2, i); \dots\}/GL_n(\mathbb{C})$. The ideal of $\pi(Z)$ consists of $g \in \mathbb{C}[z]$ such that $\pi^*g = 0$, i.e. $g(B_1B_2) = 0$. We require dim $\mathcal{O}_{\pi(Z)} = n$, which means that B_1B_2 is a regular matrix. Thus $(\mathbb{C}^2)^{[n]}_{\pi}$ consists of $GL(n, \mathbb{C})$ -orbits of triples (B_1, B_2, i) as above and such that B_1B_2 is a regular matrix. Every conjugacy class of regular matrices contains a unique companion matrix S, i.e. a matrix of the form

$$\begin{pmatrix} 0 & \dots & 0 & q_0 \\ 1 & \ddots & 0 & q_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & q_{n-1} \end{pmatrix}.$$
 (1)

If $B_1B_2 = S$, then we can conjugate B_1 and B_2 by an element of the centraliser of *S* in order to make the vector *i* equal to $e_1 = (1, 0, ..., 0)^T$. Thus $(C^2)^{[n]}$ is isomorphic to the variety of triples (B_1, B_2, S) of n < r

matrices, such that S is of the form (1), B_1, B_2 commute and $B_1, B_2 = S_1$.

2) $X = \mathbb{C}^2$ and $\pi(x, y) = xy$. Recall the description of $(\mathbb{C}^2)^{[n]}$ as $\{(B_1, B_2, i); \dots\}/GL_n(\mathbb{C})$. The ideal of $\pi(Z)$ consists of $g \in \mathbb{C}[z]$ such that $\pi^*g = 0$, i.e. $g(B_1B_2) = 0$. We require dim $\mathcal{O}_{\pi(Z)} = n$, which means that B_1B_2 is a regular matrix. Thus $(\mathbb{C}^2)^{[n]}_{\pi}$ consists of $GL(n, \mathbb{C})$ -orbits of triples (B_1, B_2, i) as above and such that B_1B_2 is a regular matrix. Every conjugacy class of regular matrices contains a unique companion matrix S, i.e. a matrix of the form

$$\begin{pmatrix} 0 & \dots & 0 & q_0 \\ 1 & \ddots & 0 & q_1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & q_{n-1} \end{pmatrix}.$$
 (1)

If $B_1B_2 = S$, then we can conjugate B_1 and B_2 by an element of the centraliser of *S* in order to make the vector *i* equal to $e_1 = (1, 0, ..., 0)^T$. Thus $(\mathbb{C}^2)_{\pi}^{[n]}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that *S* is of the form (1), B_1, B_2 commute, and $B_1B_2 = S$. 3) Let X be the double cover of the Atiyah-Hitchin manifold, i.e. an affine surface in \mathbb{C}^3 defined by the equation $x^2 - zv^2 = 1$. Again. $X_{\pi}^{[n]}$ is the variety of triples of polynomials x(z), y(z), q(z) of degrees $\leq n-1, \leq n-1$ and n and q monic, such that x(z), y(z), z satisfy the defining equation modulo q(z). Alternatively, consider the quadratic extension $z = u^2$, so that the defining equation becomes (x+uy)(x-uy) = 1. If x(z) and y(z) are polynomials of degree < n-1, then $x(z) \pm uy(z) = x(u^2) \pm uy(u^2)$ and $q(z) = q(u^2)$. In other words, $q(u^2)$ is a polynomial of degree 2n with all coefficients of odd powers equal to 0 and $p(u) = x(u^2) + uy(u^2)$ is a polynomial of degree $\leq 2n-1$ satisfying p(u)p(-u) = 1 at every root u of $q(u^2)$. Thus $\chi_{\pi}^{[n]}$ is the space of degree 2n based rational maps of the form $p(u)/q(u^2)$ with p satisfying the above condition. End

Hyperkähler metrics on $X_{\pi}^{[n]}$? Atiyah-Hitchin: do the construction $X \mapsto X_{\pi}^{[n]}$ on fibres of the twistor space of X. 3) Let X be the double cover of the Atiyah-Hitchin manifold, i.e. an affine surface in \mathbb{C}^3 defined by the equation $x^2 - zv^2 = 1$. Again. $X_{\pi}^{[n]}$ is the variety of triples of polynomials x(z), y(z), q(z) of degrees $\leq n-1, \leq n-1$ and *n* and *q* monic, such that x(z), y(z), z satisfy the defining equation modulo q(z). Alternatively, consider the quadratic extension $z = u^2$, so that the defining equation becomes (x + uy)(x - uy) = 1. If x(z) and y(z) are polynomials of degree < n-1, then $x(z) \pm uy(z) = x(u^2) \pm uy(u^2)$ and $q(z) = q(u^2)$. In other words, $q(u^2)$ is a polynomial of degree 2n with all coefficients of odd powers equal to 0 and $p(u) = x(u^2) + uy(u^2)$ is a polynomial of degree $\leq 2n-1$ satisfying p(u)p(-u) = 1 at every root u of $q(u^2)$. Thus $\chi_{\pi}^{[n]}$ is the space of degree 2n based rational maps of the form $p(u)/q(u^2)$ with p satisfying the above condition. End

Hyperkähler metrics on $X_{\pi}^{[n]}$?

Atiyah-Hitchin: do the construction $X \mapsto X_{\pi}^{[n]}$ on fibres of the twistor space of X.

Let *X* be a 4-dimensional hyperkähler manifold. Its twistor space *Z* (diffeomorphic to $X \times S^2$) is a complex 3-fold with a holomorphic projection $\pi: Z \to \mathbb{P}^1$ and an antiholomorphic involution $\tau: Z \to Z$ covering the antipodal map on \mathbb{P}^1 . There is also an O(2)-valued complex symplectic form ω along the fibres of π .

The manifold *M* and its hyperkähler structure are encoded in *Z*. In particular, *M* corresponds to a connected component of the Kodaira manifold of all τ -invariant sections of π with normal bundle $\simeq O(1) \oplus O(1)$. Each fibre of *Z* is biholomorphic to *M* with one of the complex structures.

Examples: 1) X - flat $\mathbb{R}^4 \implies Z = |O(1) \oplus O(1)|$ (total space of a vector bundle).

2) $X = S^1 \times \mathbb{R}^3 \implies Z = |L^c| \setminus \{0\}$, where L^c is a line bundle over $T\mathbb{P}^1$ with transition function $\exp\{-c\eta/\zeta\}$ (here ζ is the affine coordinate on $\mathbb{P}^1 \setminus \{0\}$ and η the induced fibre coordinate on $T(\mathbb{P}^1 \setminus \{0\})$). 3) $X - \mathbb{R}^4$ with the Taub-NUT metric \Longrightarrow

 $Z = \{ (x, y, z) \in (L^{c}(1) \oplus L^{-c}(1)) \oplus O(2); xy = z \}.$

Let X be a 4-dimensional hyperkähler manifold. Its twistor space Z (diffeomorphic to $X \times S^2$) is a complex 3-fold with a holomorphic projection $\pi : Z \to \mathbb{P}^1$ and an antiholomorphic involution $\tau : Z \to Z$ covering the antipodal map on \mathbb{P}^1 . There is also an O(2)-valued complex symplectic form ω along the fibres of π .

The manifold *M* and its hyperkähler structure are encoded in *Z*. In particular, *M* corresponds to a connected component of the Kodaira manifold of all τ -invariant sections of π with normal bundle $\simeq O(1) \oplus O(1)$. Each fibre of *Z* is biholomorphic to *M* with one of the complex structures.

Examples: 1) X - flat $\mathbb{R}^4 \implies Z = |O(1) \oplus O(1)|$ (total space of a vector bundle).

2) $X = S^1 \times \mathbb{R}^3 \implies Z = |L^c| \setminus \{0\}$, where L^c is a line bundle over $T\mathbb{P}^1$ with transition function $\exp\{-c\eta/\zeta\}$ (here ζ is the affine coordinate on $\mathbb{P}^1 \setminus \{0\}$ and η the induced fibre coordinate on $T(\mathbb{P}^1 \setminus \{0\})$). 3) $X - \mathbb{R}^4$ with the Taub-NUT metric \Longrightarrow

 $Z = \{ (x, y, z) \in (L^{c}(1) \oplus L^{-c}(1)) \oplus O(2); xy = z \}.$

Let *X* be a 4-dimensional hyperkähler manifold. Its twistor space *Z* (diffeomorphic to $X \times S^2$) is a complex 3-fold with a holomorphic projection $\pi: Z \to \mathbb{P}^1$ and an antiholomorphic involution $\tau: Z \to Z$ covering the antipodal map on \mathbb{P}^1 . There is also an O(2)-valued complex symplectic form ω along the fibres of π .

The manifold *M* and its hyperkähler structure are encoded in *Z*. In particular, *M* corresponds to a connected component of the Kodaira manifold of all τ -invariant sections of π with normal bundle $\simeq O(1) \oplus O(1)$. Each fibre of *Z* is biholomorphic to *M* with one of the complex structures.

Examples: 1) *X* - flat $\mathbb{R}^4 \implies Z = |O(1) \oplus O(1)|$ (total space of a vector bundle).

2) $X = S^1 \times \mathbb{R}^3 \implies Z = |L^c| \setminus \{0\}$, where L^c is a line bundle over $T\mathbb{P}^1$ with transition function $\exp\{-c\eta/\zeta\}$ (here ζ is the affine coordinate on $\mathbb{P}^1 \setminus \{0\}$ and η the induced fibre coordinate on $T(\mathbb{P}^1 \setminus \{0\})$). 3) $X - \mathbb{R}^4$ with the Taub-NUT metric \Longrightarrow

 $Z = \left\{ (x, y, z) \in (L^{\circ}(1) \oplus L^{-\circ}(1)) \oplus O(2); xy = z \right\}.$

Let *X* be a 4-dimensional hyperkähler manifold. Its twistor space *Z* (diffeomorphic to $X \times S^2$) is a complex 3-fold with a holomorphic projection $\pi : Z \to \mathbb{P}^1$ and an antiholomorphic involution $\tau : Z \to Z$ covering the antipodal map on \mathbb{P}^1 . There is also an O(2)-valued complex symplectic form ω along the fibres of π .

The manifold *M* and its hyperkähler structure are encoded in *Z*. In particular, *M* corresponds to a connected component of the Kodaira manifold of all τ -invariant sections of π with normal bundle $\simeq O(1) \oplus O(1)$. Each fibre of *Z* is biholomorphic to *M* with one of the complex structures.

Examples: 1) *X* - flat $\mathbb{R}^4 \implies Z = |O(1) \oplus O(1)|$ (total space of a vector bundle).

2) $X = S^1 \times \mathbb{R}^3 \implies Z = |L^c| \setminus \{0\}$, where L^c is a line bundle over $T\mathbb{P}^1$ with transition function $\exp\{-c\eta/\zeta\}$ (here ζ is the affine coordinate on $\mathbb{P}^1 \setminus \{0\}$ and η the induced fibre coordinate on $T(\mathbb{P}^1 \setminus \{0\})$).

 $Z = \{ (x, y, z) \in (L^{\circ}(1) \oplus L^{-\circ}(1)) \oplus \mathcal{O}(2); xy = z \}.$

Let *X* be a 4-dimensional hyperkähler manifold. Its twistor space *Z* (diffeomorphic to $X \times S^2$) is a complex 3-fold with a holomorphic projection $\pi : Z \to \mathbb{P}^1$ and an antiholomorphic involution $\tau : Z \to Z$ covering the antipodal map on \mathbb{P}^1 . There is also an O(2)-valued complex symplectic form ω along the fibres of π .

The manifold *M* and its hyperkähler structure are encoded in *Z*. In particular, *M* corresponds to a connected component of the Kodaira manifold of all τ -invariant sections of π with normal bundle $\simeq O(1) \oplus O(1)$. Each fibre of *Z* is biholomorphic to *M* with one of the complex structures.

Examples: 1) *X* - flat $\mathbb{R}^4 \implies Z = |O(1) \oplus O(1)|$ (total space of a vector bundle).

2) $X = S^1 \times \mathbb{R}^3 \implies Z = |L^c| \setminus \{0\}$, where L^c is a line bundle over $T\mathbb{P}^1$ with transition function $\exp\{-c\eta/\zeta\}$ (here ζ is the affine coordinate on $\mathbb{P}^1 \setminus \{0\}$ and η the induced fibre coordinate on $T(\mathbb{P}^1 \setminus \{0\})$). 3) $X - \mathbb{R}^4$ with the Taub-NUT metric \Longrightarrow

 $Z = \{(x, y, z) \in (L^{c}(1) \oplus L^{-c}(1)) \oplus O(2); xy = z\}.$

X - 4-dimensional hyperkähler manifold; for each complex structure a holomorphic map $X \to \mathbb{C} \implies$ a holomorphic map $p: Z \to |\mathcal{O}(2r)|$, $r \ge 1$.

Apply the transverse Hilbert scheme construction fibrewise to get a new twistor space $Z_p^{[n]}$ with all the properties of the twistor space of a hyperkähler manifold except, perhaps, existence of sections of $Z_p^{[n]} \to \mathbb{P}^1$ with correct normal bundle.

X - 4-dimensional hyperkähler manifold; for each complex structure a holomorphic map $X \to \mathbb{C} \implies$ a holomorphic map $p: Z \to |\mathcal{O}(2r)|$, $r \ge 1$.

Apply the transverse Hilbert scheme construction fibrewise to get a new twistor space $Z_p^{[n]}$ with all the properties of the twistor space of a hyperkähler manifold except, perhaps, existence of sections of $Z_p^{[n]} \to \mathbb{P}^1$ with correct normal bundle.

X - 4-dimensional hyperkähler manifold; for each complex structure a holomorphic map $X \to \mathbb{C} \implies$ a holomorphic map $p: Z \to |\mathcal{O}(2r)|$, $r \ge 1$.

Apply the transverse Hilbert scheme construction fibrewise to get a new twistor space $Z_p^{[n]}$ with all the properties of the twistor space of a hyperkähler manifold except, perhaps, existence of sections of $Z_p^{[n]} \to \mathbb{P}^1$ with correct normal bundle.

A section of $Z_p^{[n]} \to \mathbb{P}^1$ is the same as a curve *C* of degree *n* in O(2r) together with a lift \hat{C} to *Z*. The condition that the normal bundle of the section is the sum of O(1)'s is equivalent to $H^*(C, N_{\hat{C}/Z}(-2)) = 0$

Examples 1) $X = \mathbb{C}^* \times \mathbb{C}$, $\pi(x, z) = z \implies$ hK metric on the moduli space of *SU*(2) monopoles of charge *n*. (Nahm's equations!) 2) *X* - ALE space of type *A* or *D* (i.e. surfaces $xy = z^{k+1} + ..., x^2 - zy^2 = z^{n-1} + ...)$, $\pi(x, y, z) = z$. Then $X_{\pi}^{[n]}$ (with a bound on *n*) carries a complete hK metric (Manolescu for A_{2d} , Jackson - others). These can be realised as quiver varieties or again, as moduli spaces of solutions to Nahm's equations.

X - 4-dimensional hyperkähler manifold; for each complex structure a holomorphic map $X \to \mathbb{C} \implies$ a holomorphic map $p: Z \to |O(2r)|$, $r \ge 1$.

Apply the transverse Hilbert scheme construction fibrewise to get a new twistor space $Z_p^{[n]}$ with all the properties of the twistor space of a hyperkähler manifold except, perhaps, existence of sections of $Z_p^{[n]} \to \mathbb{P}^1$ with correct normal bundle.

A section of $Z_n^{[n]} \to \mathbb{P}^1$ is the same as a curve *C* of degree *n* in O(2r)together with a lift \hat{C} to Z. The condition that the normal bundle of the section is the sum of O(1)'s is equivalent to $H^*(C, N_{\hat{C}/Z}(-2)) = 0$ **Examples** 1) $X = \mathbb{C}^* \times \mathbb{C}, \pi(x, z) = z \implies$ hK metric on the moduli space of SU(2) monopoles of charge *n*. (Nahm's equations!)

X - 4-dimensional hyperkähler manifold; for each complex structure a holomorphic map $X \to \mathbb{C} \implies$ a holomorphic map $p: Z \to |O(2r)|$, $r \ge 1$.

Apply the transverse Hilbert scheme construction fibrewise to get a new twistor space $Z_{\rho}^{[n]}$ with all the properties of the twistor space of a hyperkähler manifold except, perhaps, existence of sections of $Z_{\rho}^{[n]} \to \mathbb{P}^1$ with correct normal bundle.

A section of $Z_n^{[n]} \to \mathbb{P}^1$ is the same as a curve *C* of degree *n* in O(2r)together with a lift \hat{C} to Z. The condition that the normal bundle of the section is the sum of O(1)'s is equivalent to $H^*(C, N_{\hat{C}/Z}(-2)) = 0$ **Examples** 1) $X = \mathbb{C}^* \times \mathbb{C}, \pi(x, z) = z \implies$ hK metric on the moduli space of SU(2) monopoles of charge *n*. (Nahm's equations!) 2) X - ALE space of type A or D (i.e. surfaces $xy = z^{k+1} + ...,$ $x^{2} - zy^{2} = z^{n-1} + ..., \pi(x, y, z) = z$. Then $X_{\pi}^{[n]}$ (with a bound on *n*) carries a complete hK metric (Manolescu for A_{2d} , Jackson - others). These can be realised as quiver varieties or again, as moduli spaces of solutions to Nahm's equations. ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・ 3) *X* - flat \mathbb{C}^2 , $\pi(x, y) = xy$. Then $Z = |O(1) \oplus O(1)| = \mathbb{P}^3 \setminus \mathbb{P}^1$ and $p : Z \to |O(2)|$. There are no sections! A section of $Z_p^{[n]} \to \mathbb{P}^1$ is a curve of degree *n* in |O(2)| together with a lift to $\mathbb{P}^3 \setminus \mathbb{P}^1$, i.e. a space curve of degree *n* and genus $(n-1)^2$ - impossible by a result of Hartshorne.

4) X - \mathbb{C}^2 with the Taub-NUT metric, $\pi(x, y) = xy$. This time yes: the fibrewise twistor construction produces a complete hK metric on $X_{\pi}^{[n]}$ (-, 2015).

Recall that $(\mathbb{C}^2)^{[n]}_{\pi}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that *S* is of the form (1), B_1, B_2 commute, and $B_1B_2 = S$. We can find a moduli space of solutions to Nahm's equations, biholomorphic to this variety.

3) *X* - flat \mathbb{C}^2 , $\pi(x, y) = xy$. Then $Z = |O(1) \oplus O(1)| = \mathbb{P}^3 \setminus \mathbb{P}^1$ and $p : Z \to |O(2)|$. There are no sections! A section of $Z_p^{[n]} \to \mathbb{P}^1$ is a curve of degree *n* in |O(2)| together with a lift to $\mathbb{P}^3 \setminus \mathbb{P}^1$, i.e. a space curve of degree *n* and genus $(n-1)^2$ - impossible by a result of Hartshorne.

4) X - \mathbb{C}^2 with the Taub-NUT metric, $\pi(x, y) = xy$. This time yes: the fibrewise twistor construction produces a complete hK metric on $X_{\pi}^{[n]}$ (-, 2015).

Recall that $(\mathbb{C}^2)^{[n]}_{\pi}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that *S* is of the form (1), B_1, B_2 commute, and $B_1B_2 = S$. We can find a moduli space of solutions to Nahm's equations, biholomorphic to this variety.

3) *X* - flat \mathbb{C}^2 , $\pi(x, y) = xy$. Then $Z = |O(1) \oplus O(1)| = \mathbb{P}^3 \setminus \mathbb{P}^1$ and $p : Z \to |O(2)|$. There are no sections! A section of $Z_p^{[n]} \to \mathbb{P}^1$ is a curve of degree *n* in |O(2)| together with a lift to $\mathbb{P}^3 \setminus \mathbb{P}^1$, i.e. a space curve of degree *n* and genus $(n-1)^2$ - impossible by a result of Hartshorne.

4) X - \mathbb{C}^2 with the Taub-NUT metric, $\pi(x, y) = xy$. This time yes: the fibrewise twistor construction produces a complete hK metric on $X_{\pi}^{[n]}$ (-, 2015).

Recall that $(\mathbb{C}^2)^{[n]}_{\pi}$ is isomorphic to the variety of triples (B_1, B_2, S) of $n \times n$ matrices, such that *S* is of the form (1), B_1, B_2 commute, and $B_1B_2 = S$. We can find a moduli space of solutions to Nahm's equations, biholomorphic to this variety.

g - Lie algebra of a compact group *G*. Nahm's equations are ODE for quadruples of g-valued smooth functions $T_i(t)$, i = 0, 1, 2, 3:

 $\dot{T}_1 + [T_0, T_1] = [T_2, T_3]$

and two further equations given by cyclic permutations of indices 1, 2, 3.

We are interested in solutions on (0, 1] such that T_0 is smooth at t = 0 and $T_i(t) = \alpha_i/t + \text{smooth}$, i = 1, 2, 3, where $\alpha_1, \alpha_2, \alpha_3$ is an $\mathfrak{su}(2)$ -triple in \mathfrak{g} .

The group of smooth gauge transformations g(t) on [0, 1] with g(0) = g(1) = 1 acts on the set of solutions and the resulting moduli space has a natural complete hyperkähler metric. With respect to any complex structure, say *I*, this manifold is biholomorphic to $S(f) \times G^{\mathbb{C}}$ where S(f) is the *Slodowy slice* to the nilpotent adjoint orbit of $f = \alpha_2 + i\alpha_3$, i.e. $S(f) = f + Z(f^*)$. For example, if G = U(n) and *f* is the standard nilpotent element of rank n-1, then S(f) is the set of matrices of the form: g - Lie algebra of a compact group *G*. Nahm's equations are ODE for quadruples of g-valued smooth functions $T_i(t)$, i = 0, 1, 2, 3:

 $\dot{T}_1 + [T_0, T_1] = [T_2, T_3]$

and two further equations given by cyclic permutations of indices 1, 2, 3.

We are interested in solutions on (0, 1] such that T_0 is smooth at t = 0 and $T_i(t) = \alpha_i/t + \text{smooth}, i = 1, 2, 3$, where $\alpha_1, \alpha_2, \alpha_3$ is an $\mathfrak{su}(2)$ -triple in \mathfrak{g} .

The group of smooth gauge transformations g(t) on [0, 1] with g(0) = g(1) = 1 acts on the set of solutions and the resulting moduli space has a natural complete hyperkähler metric.

With respect to any complex structure, say *I*, this manifold is biholomorphic to $S(f) \times G^{\mathbb{C}}$ where S(f) is the *Slodowy slice* to the nilpotent adjoint orbit of $f = \alpha_2 + i\alpha_3$, i.e. $S(f) = f + Z(f^*)$. For example, if G = U(n) and *f* is the standard nilpotent element of rank n-1, then S(f) is the set of matrices of the form: g - Lie algebra of a compact group *G*. Nahm's equations are ODE for quadruples of g-valued smooth functions $T_i(t)$, i = 0, 1, 2, 3:

 $\dot{T}_1 + [T_0, T_1] = [T_2, T_3]$

and two further equations given by cyclic permutations of indices 1, 2, 3.

We are interested in solutions on (0, 1] such that T_0 is smooth at t = 0 and $T_i(t) = \alpha_i/t + \text{smooth}, i = 1, 2, 3$, where $\alpha_1, \alpha_2, \alpha_3$ is an $\mathfrak{su}(2)$ -triple in \mathfrak{g} .

The group of smooth gauge transformations g(t) on [0, 1] with g(0) = g(1) = 1 acts on the set of solutions and the resulting moduli space has a natural complete hyperkähler metric. With respect to any complex structure, say *I*, this manifold is biholomorphic to $S(f) \times G^{\mathbb{C}}$ where S(f) is the *Slodowy slice* to the nilpotent adjoint orbit of $f = \alpha_2 + i\alpha_3$, i.e. $S(f) = f + Z(f^*)$. For example, if G = U(n) and *f* is the standard nilpotent element of rank n-1, then S(f) is the set of matrices of the form:

◆□▶ ◆課▶ ◆注▶ ◆注▶ 注:のへぐ

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), f a regular nilpotent element, M - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge n.

2) g of type A, D or E, f a subregular nilpotent orbit, M a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type A, D or E.

 g and *M* as above of type *A* or *D*, *f* - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, *f* - regular nilpotent, *M* - regular semisimple orbit of $SL(k, \mathbb{C})$: get the ALF-spaces of type $Q_{\pm}, \pm \infty$

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), f a regular nilpotent element, M - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge n.

2) \mathfrak{g} of type A, D or E, f a subregular nilpotent orbit, M a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type A, D or E.

3) \mathfrak{g} and M as above of type A or D, f - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, *f* - regular nilpotent, *M* - regular semisimple orbit of $SL(k, \mathbb{C})$: get the ALF-spaces of type $Q_{\pm}, \pm \infty$

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), *f* a regular nilpotent element, *M* - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge *n*.

2) g of type A, D or E, f a subregular nilpotent orbit, M a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type A, D or E.

3) \mathfrak{g} and M as above of type A or D, f - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, f - regular nilpotent, M - regular semisimple orbit of $SL(k, \mathbb{C})$: get the ALF-spaces of type Q_{\pm} , z_{\pm} , z_{\pm

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), *f* a regular nilpotent element, *M* - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge *n*.

2) \mathfrak{g} of type A, D or E, f a subregular nilpotent orbit, M a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type A, D or E.

 g and *M* as above of type *A* or *D*, *f* - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, f - regular nilpotent, M - regular semisimple orbit of $SL(k, \mathbb{C})$: get the ALF-spaces of type Q_{\pm} , z_{\pm} , $z_{\pm} \to \infty$

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), *f* a regular nilpotent element, *M* - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge *n*.

2) \mathfrak{g} of type *A*, *D* or *E*, *f* a subregular nilpotent orbit, *M* a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type *A*, *D* or *E*.

3) \mathfrak{g} and M as above of type A or D, f - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, *f* - regular nilpotent, *M* - regular semisimple orbit of $SL(k, \mathbb{C})$: get the ALF-spaces of type Q_{\pm} , z_{\pm} , $z_{\pm} \to \infty$

The group *G* acts isometrically and triholomorphically on $S(f) \times G^{\mathbb{C}}$, and so, if *M* is any other hyperkähler manifold with a hyperkähler *G*-action, then we can form hyperkähler quotients of $M \times S(f) \times G^{\mathbb{C}}$ by the diagonal *G*-action.

The nice thing is that the complex structures of these quotients are easily identified (under mild assumptions):

if $\mu : M \to \mathfrak{g}^{\mathbb{C}}$ is the complex moment map for the $G^{\mathbb{C}}$ -action on M, then this hyperkähler quotient is biholomorphic to $\mu^{-1}(S(f))$.

Examples: 1) G = U(n), *f* a regular nilpotent element, *M* - second copy of $S(f) \times G^{\mathbb{C}}$: get the moduli space of SU(2)-monopoles of charge *n*.

2) \mathfrak{g} of type *A*, *D* or *E*, *f* a subregular nilpotent orbit, *M* a regular semisimple adjoint orbit of $G^{\mathbb{C}}$ with its Kronheimer's metric: get the ALE-spaces of type *A*, *D* or *E*.

3) \mathfrak{g} and M as above of type A or D, f - more general: get the transverse Hilbert schemes of points on ALE-spaces (Seidel-Smith, Manolescu, Jackson).

4) $G = SU(2) \times SU(k-2)$, *f* - regular nilpotent, *M* - regular semisimple orbit of $SL(k,\mathbb{C})$: get the ALF-spaces of type D_k

We can identify *M* with pairs B_1, B_2 of complex matrices; then the two $\mathfrak{gl}(n, \mathbb{C})$ -valued moment maps are given by B_1B_2 and B_2B_1 . Thus the transverse Hilbert scheme is the set of (B_1, B_2) such that B_1B_2 and B_2B_1 is a companion matrix. It follows that this is the same companion matrix and we obtain $(\mathbb{C}^2)_{\pi}^{[n]}$.

The transverse Hilbert schemes of points on the D_0 , D_1 , D_2 -surfaces arise this way for G = U(n), f - a regular nilpotent element, and Mproduct of two minimal semisimple adjoint orbits. For the D_0 - and D_1 -surface there is an alternative description, as a hyperkähler submanifold of the moduli space of magnetic

SU(2)-monopoles of charge 2n for D_0 and charge 2n+1 for D_1 .

We can identify *M* with pairs B_1, B_2 of complex matrices; then the two $\mathfrak{gl}(n, \mathbb{C})$ -valued moment maps are given by B_1B_2 and B_2B_1 . Thus the transverse Hilbert scheme is the set of (B_1, B_2) such that B_1B_2 and B_2B_1 is a companion matrix. It follows that this is the same companion matrix and we obtain $(\mathbb{C}^2)_{\pi}^{[n]}$.

The transverse Hilbert schemes of points on the D_0 , D_1 , D_2 -surfaces arise this way for G = U(n), f - a regular nilpotent element, and Mproduct of two minimal semisimple adjoint orbits. For the D_0 - and D_1 -surface there is an alternative description, as a hyperkähler submanifold of the moduli space of magnetic SU(2)-monopoles of charge 2n for D_0 and charge 2n + 1 for D_1 .

We can identify *M* with pairs B_1, B_2 of complex matrices; then the two $\mathfrak{gl}(n, \mathbb{C})$ -valued moment maps are given by B_1B_2 and B_2B_1 . Thus the transverse Hilbert scheme is the set of (B_1, B_2) such that B_1B_2 and B_2B_1 is a companion matrix. It follows that this is the same companion matrix and we obtain $(\mathbb{C}^2)_{\pi}^{[n]}$.

The transverse Hilbert schemes of points on the D_0 , D_1 , D_2 -surfaces arise this way for G = U(n), f - a regular nilpotent element, and M product of two minimal semisimple adjoint orbits.

For the D_0 – and D_1 -surface there is an alternative description, as a hyperkähler submanifold of the moduli space of magnetic SU(2)-monopoles of charge 2*n* for D_0 and charge 2*n* + 1 for D_1 .

We can identify *M* with pairs B_1, B_2 of complex matrices; then the two $\mathfrak{gl}(n, \mathbb{C})$ -valued moment maps are given by B_1B_2 and B_2B_1 . Thus the transverse Hilbert scheme is the set of (B_1, B_2) such that B_1B_2 and B_2B_1 is a companion matrix. It follows that this is the same companion matrix and we obtain $(\mathbb{C}^2)_{\pi}^{[n]}$.

The transverse Hilbert schemes of points on the D_0 , D_1 , D_2 -surfaces arise this way for G = U(n), f - a regular nilpotent element, and M product of two minimal semisimple adjoint orbits.

For the D_0 – and D_1 -surface there is an alternative description, as a hyperkähler submanifold of the moduli space of magnetic SU(2)-monopoles of charge 2n for D_0 and charge 2n+1 for D_1 .