Near Detector Considerations

F. Di Lodovico (QMUL), D. Wark (STFC/Oxford) for the UK HK Community

Third Open Meeting for the Hyper-Kamiokande Project
Kavli IPMU, June 21-22 2013
Outline

- A reminder of the current ν_e analysis at T2K
 - Addressing current strategy and systematic errors

- Constraints from ND280
 - Beam
 - Neutrino interactions
 - A focus on the ~ 1GeV region
 - Multi-nucleon effects

- Systematic error reduction in the spectrum propagation to SK
 - 2KM WC

- Topology identification
 - LAr (Ne?)
 - ND280
• A reminder of the current ν_e analysis at T2K
 • Addressing current strategy and systematic errors

• Constraints from ND280
 • Beam
 • Neutrino interactions
 • A focus on the ~ 1GeV region
 • Multi-nucleon effects

• Systematic error reduction in the spectrum propagation to SK
 • 2KM WC

• Topology identification
 • LAr (Ne?)
 • ND280
ν_e Appearance Analysis Strategy

1. Neutrino Flux Predictions
2. Neutrino Cross Section Predictions
3. ND280 CCQE and CCnQE Data Samples
4. Cross-check intrinsic ν_e component at ND280

- Fit ND280 sample to tune ν_μ, flux and CCQE, CC1π cross sections and reduce flux, cross section uncertainties.

- Apply rate correction to events at SK and fit to determine oscillation parameters.

ν_e appearance: θ_{13}; ν_μ disappearance: θ_{23}, Δm^2_{23}
Selecting CCν_μ interactions at ND280

Measure un-oscillated ν_μ (CC) rate in ND280 tracker (current analysis):

- Neutrino interactions in FGD1 FV
- Veto events with TPC1 tracks
- Select highest momentum, negative curvature track as μ^- (TPC PID)
- Further separate sample into two categories:
 - CCQE-enhanced
 - 1 TPC-FGD matched track
 - No decay electron in FGD1
 - CCnQE-enhanced
 - All other CC inclusive
 - The $(P_\mu, \cos \theta_\mu)$ spectrum used to constrain flux and xsection parameters used by SK

Measure intrinsic ν_e (CC) rate in ND280 tracker (current analysis):

- Similar selection to $CC\nu_\mu$
- Request an electron instead of a muon
- Use vertexes in the FGD2 as well to increase the statistics
- Use the ECAL to reject background reaching it.

Selected events:

- $\sim 80\% \, \nu_e$ are from kaon decays
- $\sim 78\%$ of the background is low energy electrons from γ conversion in the FGD, where γ come from π^0 from ν_μ interactions either in the FGD or in the surrounding material

Notes on near detector needs:

- at least as good PID as we have now
- reduction background from gamma rays
After ND tuning, expect \((8.2 + 3.3 =) 11.2\) events with \(\nu_\mu \rightarrow \nu_e\) oscillation, 3.3 without.

<table>
<thead>
<tr>
<th>Signal ((\nu_\mu \rightarrow \nu_e\ oscillation))</th>
<th># events</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m^2_{32}=2.4 \times 10^{-3}) eV(^2), (\sin^2 2\theta_{23}=1.0) @ (\sin^2 2\theta_{13}=0.1, \delta CP=0)</td>
<td>8.2</td>
</tr>
</tbody>
</table>

\(\nu_e\) signal @ \(\Delta m^2_{32}=2.4 \times 10^{-3}\) eV\(^2\), \(\sin^2 2\theta_{23}=1.0\)

<table>
<thead>
<tr>
<th>Background</th>
<th># events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam (\nu_e + \bar{\nu}_e)</td>
<td>1.7</td>
</tr>
<tr>
<td>CC(\nu_\mu)</td>
<td>0.06</td>
</tr>
<tr>
<td>NC(\nu_\mu)</td>
<td>1.2</td>
</tr>
<tr>
<td>Osc through (\theta_{12})</td>
<td>0.18</td>
</tr>
<tr>
<td>Total</td>
<td>(3.3 \pm 0.43) (syst)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>(\nu_e) bkgd</th>
<th>(\nu_e) sig+bkgd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu) flux + xsec (constrained by ND280)</td>
<td>±8.5%</td>
<td>±5.0%</td>
</tr>
<tr>
<td>(\nu) Xsec (no constraint by ND280)</td>
<td>±5.9%</td>
<td>±7.8%</td>
</tr>
<tr>
<td>Far Detector</td>
<td>±6.6%</td>
<td>±3.0%</td>
</tr>
<tr>
<td>Total</td>
<td>±13.0%</td>
<td>±9.9%</td>
</tr>
<tr>
<td>No ND measurement</td>
<td>18.3±</td>
<td>22.6±</td>
</tr>
</tbody>
</table>

[arXiv:1304.0841 [hep-ex]]
• A reminder of the current ν_e analysis at T2K
 • Addressing current strategy and systematic errors

• Constraints from ND280
 • Beam
 • Neutrino interactions
 • A focus on the \sim1GeV region
 • Multi-nucleon effects

• Systematic error reduction in the spectrum propagation to SK
 • 2KM WC

• Topology identification
 • LAr (Ne?)
 • ND280
The flux parametrization variation is described by normalization parameters in bins of E_ν and flavour at a given detector.

The ND280 ν_μ and SK ν_μ flux predictions have large correlations: the ν_μ rate at the ND can constrain the unoscillated ν_μ interaction rate at the FD.

The SK ν_e flux at SK is also correlated with the ND280 ν_μ flux since they both originate from the $\pi \rightarrow \mu \nu_\mu$ decay.

<table>
<thead>
<tr>
<th>Propagated Neutrino Flux</th>
<th>Prior Value</th>
<th>Fitted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ 0.0-0.4 GeV</td>
<td>1.00±0.12</td>
<td>0.98±0.09</td>
</tr>
<tr>
<td>ν_μ 0.4-0.5 GeV</td>
<td>1.00±0.13</td>
<td>0.99±0.10</td>
</tr>
<tr>
<td>ν_μ 0.5-0.6 GeV</td>
<td>1.00±0.12</td>
<td>0.98±0.09</td>
</tr>
<tr>
<td>ν_μ 0.6-0.7 GeV</td>
<td>1.00±0.13</td>
<td>0.93±0.08</td>
</tr>
<tr>
<td>ν_μ 0.7-1.0 GeV</td>
<td>1.00±0.14</td>
<td>0.84±0.08</td>
</tr>
<tr>
<td>ν_μ 1.0-1.5 GeV</td>
<td>1.00±0.12</td>
<td>0.86±0.08</td>
</tr>
<tr>
<td>ν_μ 1.5-2.5 GeV</td>
<td>1.00±0.10</td>
<td>0.91±0.08</td>
</tr>
<tr>
<td>ν_μ 2.5-3.5 GeV</td>
<td>1.00±0.09</td>
<td>0.95±0.07</td>
</tr>
<tr>
<td>ν_μ 3.5-5.0 GeV</td>
<td>1.00±0.11</td>
<td>0.98±0.08</td>
</tr>
<tr>
<td>ν_μ 5.0-7.0 GeV</td>
<td>1.00±0.15</td>
<td>0.99±0.11</td>
</tr>
<tr>
<td>ν_μ >7.0 GeV</td>
<td>1.00±0.19</td>
<td>1.01±0.15</td>
</tr>
</tbody>
</table>

Similarly for the ν_e and the antiparticles.
Neutrino Interactions at ND and SK

<table>
<thead>
<tr>
<th>Interaction Mode</th>
<th>Trkr. ν_μ CCQE</th>
<th>Trkr. ν_μ CCnQE</th>
<th>SK ν_e Sig.</th>
<th>SK ν_e Bgdnd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCQE</td>
<td>76.6%</td>
<td>14.6%</td>
<td>85.8%</td>
<td>45.0%</td>
</tr>
<tr>
<td>CC1π</td>
<td>15.6%</td>
<td>29.3%</td>
<td>13.7%</td>
<td>13.9%</td>
</tr>
<tr>
<td>CC coh.</td>
<td>1.9%</td>
<td>4.2%</td>
<td>0.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>CC other</td>
<td>4.1%</td>
<td>37.0%</td>
<td>0.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>NC</td>
<td>1.5%</td>
<td>5.3%</td>
<td>-</td>
<td>39.7%</td>
</tr>
</tbody>
</table>

CCQE and **CC1π** are the largest interaction mode in ND, SK samples:

- Separation of CCQE and CCnQE ND samples gives additional power for fit to constrain cross section models
- Need to account for acceptance difference between ND (forward going selection) and SK (4π selection) for identical changes to cross section to correlate the two samples
- Compared external (MiniBooNE, SciBooNE...) neutrino-nucleon cross sections with neutrino interaction models

NC is the largest background at SK after the selection
Sub-set of parameters which are substantially constrained by the ND280 data-set and relevant to the event rate prediction at SK

- M_A^{QE} and M_A^{RES}: modify Q^2 distribution of QE and resonant 1π cross sections

- Normalizations provide overall scaling independent of Q^2 on a particular interaction

Apply cross section to observables at ND, SK using reweighting techniques

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior Value</th>
<th>Fitted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_A^{QE} (GeV)</td>
<td>1.21±0.45</td>
<td>1.33±0.20</td>
</tr>
<tr>
<td>M_A^{RES} (GeV)</td>
<td>1.16±0.11</td>
<td>1.15±0.10</td>
</tr>
<tr>
<td>CCQE norm 0-1.5 GeV</td>
<td>1.00±0.11</td>
<td>0.96±0.09</td>
</tr>
<tr>
<td>CC1(\pi) norm 0-2.5 GeV</td>
<td>1.63±0.43</td>
<td>1.61±0.29</td>
</tr>
<tr>
<td>CC1(\pi^0) norm</td>
<td>1.19±0.43</td>
<td>1.19±0.40</td>
</tr>
</tbody>
</table>

Parameter value, uncertainty are determined from the MiniBooNE single pion samples

Parameter value, uncertainty are extrapolated to the SK sample

A focus on the ~1GeV region

T2K flux around 0.5-1 GeV.
CC interactions dominated by CCQE

Minor fraction of xsection at ~1GeV is purely leptonic - exactly known in the SM. Majority of interactions occur on bound states (nucleon, nuclei).
A focus on the ~1GeV region

T2K flux around 0.5-1 GeV.

CC interactions dominated by CCQE

Minor fraction of xsection at ~1GeV is purely leptonic - exactly known in the SM. Majority of interactions occur on bound states (nucleon, nuclei).
CCQE Measurements

• Turning point is the high statistics MiniBooNE CCQE double differential cross section measurement:

• Cross section energy dependence in C is inconsistent between NOMAD and MiniBooNE.

• Experiments use a different definition of CCQE than theorists
 \(\nu_\mu + n \rightarrow \mu + p \) (see Feynman diagram)
 \(\nu_\mu + X \rightarrow \mu + X' + 0\pi \) (MB)
 \(\nu_\mu + X \rightarrow \mu + X' + 0\pi + \text{no vertex activity} \)
 \(\nu_\mu + X \rightarrow \mu + p + X' + 0\pi \) (NOMAD)

……

Based on what the experiments can observe
Introducing the Meson Exchange Current

Plenty of models have arisen to explain MiniBooNE CCQE data
Most popular is np-nh or meson exchange currents (MEC)
Can calculate from diagrams:

Also include pion-less Δ decays in models

Models good up to ~ 1.5 GeV - No prediction for nucleon kinematics

$$\nu_\mu n \rightarrow \mu^- p + \nu_\mu (np)_{\text{corr}} \rightarrow \mu^- pp$$

Martini et al
Reconstructed Energy Bias

- Not all the events (currently) reconstructed as CCQE are true CCQE, mainly due to multi-nucleon events.
- MEC events introduce a bias to the energy reconstruction.

Reconstructed neutrino energy bias in case not all the outgoing particles (nucleons, pions) are identified.

Mosel and Lalalukich arXiv:1208.3678 [nucl-th]

Martini et al, Phys. Rev. D87 (2013) 013009

To separate MEC from CCQE we need to analyze the final state nucleons.

More references:
Outline

• A reminder of the current ν_e analysis at T2K
 • Addressing current strategy and systematic errors

• Constraints from ND280
 • Beam
 • Neutrino interactions
 • A focus on the \sim1GeV region
 • Multi-nucleon effects

• Systematic error reduction in the spectrum propagation to SK
 • 2KM WC

• Topology identification
 • LAr (Ne?)
 • ND280
To reduce the errors at the FD we can concentrate on the following areas:

- Reduction of the differences between the ND and FD detectors:
 - Use same flux
 - Use same nucleus

- Improve the knowledge of the cross sections at the ND
 - We need to measure both CC and NC cross sections
 - We need to be able to measure multi-nucleon final states.

- Improve the measurement of the intrinsic ν_e contamination
Original proposal for a 2KM detector for T2K in 2007

A letter of intent to extend T2K with a detector 2 km away from the JPARC neutrino source, June 2007

The 2007 proposal includes:

- 1kton Water Cherenkov Detector
- 100ton LAr detector
- Iron muon range
• At 280m: neutrino source not point-like, spectral differences with respect to SK
• Neutrino spectra at SK and 2KM are almost the same: ~same beam → energy spectrum
• To improve our current precision we need to improve our errors on the flux predictions
• **Same nucleus** at the 2KM and SK.
 • Same neutrino interaction cross sections
 • Same energy bias
• **Neutrino energy tail** ~20% smaller than at ND280
 • Less contribution from non-CCQE events to the neutrino energy

ND280 and SK normalized to the same area:

As left plot but logarithmic scale:
• Full 4π coverage for 2KM and SK detectors
 • $\sim20\%$ of the SK events are backward.

• Measure rate of NC π^0 of NC single pion in water
• Much higher photocathode coverage \rightarrow useful for systematics
• A reminder of the current ν_e analysis at T2K
 • Addressing current strategy and systematic errors

• Constraints from ND280
 • Beam
 • Neutrino interactions
 • A focus on the ~ 1GeV region
 • Multi-nucleon effects

• Systematic error reduction in the spectrum propagation to SK
 • 2KM WC

• Topology identification
 • LAr (Ne?)
 • ND280
Main advantages of a LAr detector for HK are:

- Particles below Cherenkov threshold are visible, especially protons.
- Independent measure of off-axis flux and non-QE/QE event ratio.
- Exclusive measurement of NC and intrinsic electron neutrino background. Excellent PID will allow these to be separately measured.

ARGONEUT DATA-MC COMPARISON (II)

- Improve neutrino interaction understanding. It allows topology recognition with extraordinary sensitivity
- Many world-wide efforts in the LAr technology (test-beams and neutrino running)
Note of caution for HK:

• Different nucleus than Oxygen, so one needs to properly rescale between them.

• A slab of frozen Oxygen in the middle of the detector was introduced in the original 2KM proposal to allow to directly measure the interactions in the two nuclei.

• Some Dark Matter experiments, DEAP, CLEAN, miniCLEAN, are using both Ar and Neon. No further usage of Neon apart from DM, but we can look into it.

• Others?
• We need a detector that can perform precise studies of neutrino-nucleon scattering.
• Recent requirement for measuring the cross section is to resolve multi-nucleon final states.
• The detector needs very good vertexing and ability to identify the produced particles in multi-particle final states, track low energy charged particles etc.

We can improve the ND280 detector using a finely-segmented scintillator-based up-stream tracking region.
The ND280 Detector

- Using scintillator strips instead of water → MINERvA-type detector
- A nuclear target region will allow to measure the interactions in Oxygen.
- The current detector can be adapted with scintillator instead of water planes in the P0D.
- Possibly use 3 different orientations of planes (XUV) → 3D reconstruction
- The P0D-ECAL can be replaced by a more segmented ECAL, similarly to Barrel or DSECAL.
The ND280 refurbishment is on top of any possible upgrade we aim to do.

- ND280 will be more than 13y old and will need to last for another decade at least.
- There are several aspects related to aging and spares (same technology may not be available anymore) that we need to address:
 - Electronics ageing:
 - Minimize the possible replacements. Some electronic cards may be impossible to replace unless we fully dis-assemble the detector. We can concentrate on the RMMs (Readout Merger Modules) only for upgrade/replacement, not TFBs (Trip-t Front End Boards).
 - MPPCs aging should be OK, but new technology and no experiment used them for long time. Extremely low failure rate so far.
 - MicroMega aging should be OK.
 - Scintillator/fiber aging:
 - To check light yield reduction. Studies from MINOs available.
Conclusion

- We can learn from current T2K experience how to design the ND.

- ND very important to reduce errors at the FD
 - Flux: using the ND280 flux to reweight the SK flux
 - Neutrino interactions: MEC effect is important

- Near Detectors for HK:
 - We can look (again) at the 2KM near detector
 - Very important for having the same flux as at HK
 - Systematics will partially cancel due to the usage of the same nucleus
 - Possible LAr (or other nuclei) will help in precisely measuring neutrino interaction and intrinsic ν_e beam background
 - Upgraded ND280 with a fully active up-stream detector to measure neutrino interaction with high precision.
$N(\nu_e) = \Phi(E_\nu) \sigma(E_\nu) \epsilon P(\nu_\mu \rightarrow \nu_e)$

Fit the observed rate to determine $\sin^2 2\theta_{13}$. Also depends on

- Neutrino Flux Prediction
- Neutrino Cross Section Model
- Far Detector Selection, Efficiency

We decrease the error on the ν_e rate, with the near detector;

$N(\nu_\mu) = \Phi(E_\nu) \sigma(E_\nu) \epsilon$
A focus on the ~1GeV region

Minor fraction of xsection at ~1GeV is purely leptonic - exactly known in the SM. Majority of interactions occur on bound states (nucleon, nuclei).

Until recently, assumed neutrinos interaction with individual bound nucleons (Impulse Approximation)

ν interaction is a two-step process: a primary interaction followed by final states interactions (FSI) effects: before leaving nucleus, hadrons undergo re-interaction

Quark: Known.
Lepton: “Trivial.”

Nucleon: Parameterize w/ Form Factors.

Nucleus: Hard! Very complex nuclear physics. But this is where we want σ…
CCQE Measurements

- Turning point is the high statistics MiniBooNE CCQE double differential cross section measurement:

- Energy dependence of cross section of C is inconsistent between NOMAD and MiniBooNE.
- MiniBooNe measure $\mu 0\pi$, NOMAD selects μp
- Range of multinucleon models (extra process where neutrino interacts with more than a free nucleon) proposed:
 - Transverse enhancement to the cross section
 - Meson exchange current (MEC, simple Marteu process)
- Cross section also depends upon how nucleon is described within nuclear potential (nucleon is usually a relativistic gas model)
Introducing the Meson Exchange Current

One body basic intuition:

Fermi Gas: noninteracting nucleons, all states filled up to k_F

Two body basic intuition:
think about more Feynman diagrams

MEC events are suspected to introduce a strong bias to energy reconstruction:

To separate MEC from CCQE analyze final state nucleons.