Direct Neutrino Mass Measurements
Using Weak Decays

marco.kleesiek@kit.edu (Institute of Nuclear Physics)
 PhyStat-v 2016 in Kashiwa, Japan – May 30th
Outline

1. Motivation
2. Direct ν-mass measurement principle (β-decay)
3. History of direct ν-mass results
4. Introduction to the KATRIN experiment

Fermi (1933)
Motivation

- Oscillation experiments have unambiguously established $m_\nu > 0$ eV
 - Nobel prize in 2015
- Non-zero neutrino masses are not easily explainable within the SM
 - Hint towards lepton number violation, new source of CP violation, sterile (right-handed) neutrinos, new energy scale, ...
- m_ν of major interest for astrophysics and cosmology

Gonzalez-Garcia, Maltoni, Schwetz (2014)
Neutrino mass spectrum

- Flavor states ≠ propagation (mass) states
- Oscillation results: tiny mass splittings + large mixing

![Diagram showing Neutrino mass spectrum]

Absolute ν mass scale?
Ways to the absolute neutrino mass scale

- Cosmology
 - CMB, LSS, BAO
 - model-dependent
 - $\sum_i m_i \lesssim 0.12 - 1.0$ eV

- Neutrinoless double beta decay ($0\nu\beta\beta$)
 - model-dependent (Majorana CP phases)
 - $m_{\beta\beta} = |\sum_i U_{ei}^2 m_i| < 0.2 - 0.4$ eV
 - GERDA, EXO/nEXO, SNO+, MAJORANA, CUORE, CANDLES, NEXT, KamLAND-Zen, ...
Direct neutrino mass search

- SN1987a (time-of-flight analysis)
 - \(m(\nu_e) < 5.7 \text{ eV (95\% C.L.)} \)

- Kinematics / spectroscopy of weak decays
 1. \(\beta \)-decay of tritium (\(T_2 \))
 - KATRIN, PROJECT 8
 2. electron capture of holmium (\(^{163}\text{Ho}\))
 - ECHO, HOLMES
 - model-independent:
 \[
 m^2(\nu_e) = \sum_i |U_{ei}^2| m_i^2
 \]

 - status: \(m(\nu_e) < 2000 \text{ meV (95\% C.L.)} \)
 - potential: \(m(\nu_e) < 200 \text{ meV (90\% C.L.)} \)
Measurement Principle
of tritium β-decay spectroscopy
Shape of the β electron spectrum

- β-decay of tritium: $^3H \rightarrow ^3He^+ + \bar{\nu}_e + e^-$
- spectroscopy of the emitted electron kinetic energy

\[
\frac{d\Gamma}{dE} \propto (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_{\nu_e}^2} \cdot \theta(E_0 - E - m_{\nu_e}^2)
\]

\[
m^2(\nu_e) = \sum_i |U_{ei}|^2 m_i^2
\]

\[
\frac{d\Gamma}{dE}
\]

fraction of β electrons in last eV before E_0:
$2 \cdot 10^{-13}$
Standard experimental tritium β-decay setup

- essentially since 1952 (only few exceptions)

- **β emitter**
 - tritium source

- **electron collimation**
 - magnetic transport
 - high luminosity
 - gaseous or solid
 - good understanding of energy loss processes

- **energy filter**
 - spectrometer
 - adiabatic / undisturbed transport of β electrons
 - removal of residual T_2
 - high energy resolution
 - low background

- **counter**
 - detector
 - high efficiency
 - low backscattering
 - low background
Response of the experimental apparatus

- Response function $R(E)$ describes the influence of the apparatus on the β-decay spectrum
 - Spectrometer energy resolution / transmission characteristics
 - Energy loss processes of β electrons
Observed signal

- For magnetic spectrometers (till early 90s)
 \[\dot{N}_{\text{sig}}(E) \propto R(E) \otimes \frac{d\Gamma}{dE}(m_{\nu e}^2, E_0) \]

- For electrostatic spectrometers (Troitsk, Mainz, KATRIN)
 \[\dot{N}_{\text{sig}}(U) \propto \int_{qU}^{\infty} R(U, E) \cdot \frac{d\Gamma}{dE}(m_{\nu e}^2, E_0) \, dE \]

Kawakami et al. (1990), Tokyo
Standard 4 parameter model fit

- Number of observed events N_i at retarding step i with retarding voltage U_i (recent setups):

$$N_i \propto t_i \cdot \left[A_{\text{sig}} \cdot \int_{qU_i}^{\infty} R(U_i) \cdot \frac{d\Gamma}{dE}(m_{\nu_e}^2, E_0) \, dE + R_{\text{bg}} \right]$$

- Parameter of interest:
 - Squared neutrino mass $m_{\nu_e}^2$

- Nuisance parameters:
 - Tritium endpoint energy E_0
 - Signal amplitude A_{sig}
 - Mean background rate R_{bg}

- $A_{\text{sig}}, E_0, R_{\text{bg}}$ are correlated with $m_{\nu_e}^2$ and apriori not known well enough
Hypothetical neutrino mass signal (KATRIN)
Data analysis – probabilistic model

• Having several data points $N_{\text{obs},i}$
 - number of counted / observed electrons
 - random variable with Poissonian distribution (radioactive decays)
 - with statistical error $\sigma = \sqrt{N_{\text{mod},i}}$
 - no binning required

• and a model prediction for the mean value $N_{\text{mod},i}(m_v^2, A_{\text{sig}}, E_0, R_{\text{bg}})$

• formulate likelihood

$$L = \prod_{i} p \left(N_{\text{obs},i} \mid N_{\text{mod},i} \right)$$

• and χ^2 statistic for $p \approx$ Gaussian distr. with $\sigma = \sqrt{N}$

$$-2 \log L = \chi^2 = \sum_{i} \left(\frac{N_{\text{obs},i} - N_{\text{mod},i}}{\sigma} \right)^2$$
Data analysis – parameter inference

• Method of least squares (most common):
 • χ^2 minimization $\rightarrow \hat{m}_\nu^2$ best-fit estimate
 • determine statistical error $\sigma_{\text{stat}}(m_\nu^2)$ from profile likelihood / $\Delta \chi^2$ shape
 ($\Delta \chi^2 = 1$ rule, considering nuisance parameters)
• or ensemble tests

Kraus et al. (2005) Mainz χ^2 curves

KATRIN ensemble tests for $m_\nu^2 = 0$ eV2
Data analysis – systematic errors

• Common practice for systematic errors:
 • Evaluate shift of the estimate $\Delta \hat{m}^2$ for each systematic effect / variable + covariances using Monte Carlos

 $$\sigma_{\text{syst}}(m^2) = \sqrt{\Delta_1^2 + \Delta_2^2 + \rho(\Delta_1\Delta_2) + \cdots}$$

• Add systematic errors in quadrature, incl. correlation terms:

 $$\sigma(m^2) = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

• Combine statistical and systematic error in quadrature:

 • Publish distinct results if a systematic is 'not parameterizable'

 • E.g. different final state calculations

Fritschi et al. (1986) Zürich
Data analysis – Bayesian approach

- rarely used in direct ν-mass analyses
- perform Markov Chain Monte Carlos to sample posterior probability density distributions from the likelihood based on Bayes’ Theorem
- no distinction between nuisance and systematic parameters necessary
 - likelihood constraints for each systematic (e.g. Gaussian prior)
- priors must be agreed on (especially m_ν or m_ν^2 resp.)
Why measure the *squared* neutrino mass?

- \(\frac{d\Gamma}{dE} \propto \sqrt{(E_0 - E)^2 - m_\nu^2} \), for \(m_\nu^2 \ll E \): \(\chi^2 \propto (m_\nu^2)^2 \)
- \(\chi^2 \) is parabolic in \(m_\nu^2 \)
- \(m_\nu^2 \) estimates are Gaussian distributed – very convenient error treatment
- Errors for \(m_\nu \) strongly depend on absolute value of \(m_\nu \)
 \rightarrow for \(m_\nu^2 \) they don’t.
Continuation for non-physical $\hat{m}_ν^2 < 0$

- Required to reflect statistical fluctuations of observed data
 - $χ^2$ statistic / goodness-of-fit
 - Frequentist confidence interval construction

- Demands arbitrary non-physical continuation of the model
 - Symmetrical continuous likelihood / $χ^2$ around minimum

- Not required in bayesian methods
 - Choose prior with $m_ν^2 ≥ 0$.

Distribution of $\hat{m}_ν^2$ estimates without continuation

$β$ decay rate $dΓ/dE$ in $s^{-1}eV^{-1}$

- $m_ν^2 = 1.0$ eV2
- $m_ν^2 = 0.0$ eV2
- $m_ν^2 = -1.0$ eV2, tachyonic
- $m_ν^2 = -1.0$ eV2, extrapolated

Electron energy $E - E_0$ in eV

- $0 < \hat{m}_ν^2 < 0.05$
- $-2 < E - E_0 < 1$
Results of Previous β-Decay Experiments
and the statistical method involved
First tritium β-decay ν-mass limit

- Curran et al., Phys. Rev. 76 (1949)
- pulse height distribution measured with proportional counter
- $0 \text{ keV} < m(\nu_e) < 1 \text{ keV}$
Direct ν-mass measurements since 1990

- about a dozen direct ν-mass experiments since 1949
- early estimates clearly tend towards non-physical values
Interpretation of non-physical m^2_ν estimates

A. k. a. the *neutrino problem* or *bounded Gaussian mean* problem:

- Many experiments with m^2_ν best-fit in a non-physical region
- Resulting in small or empty classical *confidence intervals*

Bob Cousins, Virtual Talk (2012)
Interpretation of non-physical m^2_ν estimates

- Some workarounds do not produce correct Frequentist coverage

upper limit = $\max(x, 0) + 1.64\sigma$

flip-flopping

overcoverage

undercoverage

Bob Cousins, Virtual Talk (2012)
Interpretation of non-physical m^2_ν estimates

- In 1979 the particle data group (PDG) recommended a *Bayesian approach* with flat prior in $m^2_\nu \geq 0$ (curve b):

Robertson & Knapp (1988)
Interpretation of non-physical m^2_ν estimates

• In 1997 Feldman & Cousins present their unified approach
 • Neyman confidence belt construction with ordering principle
 • Non-null Frequentist confidence intervals beyond physical boundaries
 • Correct global coverage

• Recommended by particle data group (PDG) since 1998
Comparison of confidence / credible intervals

95% C.L. intervals

μ = -2σ

μ = 0

μ = +2σ
Critical systematic effects

- Underestimated / missed energy loss processes usually lead to smaller (or negative) m_ν^2
- Usually, these systematic errors increase for smaller energies (further away from E_0)
Critical systematic effects

- Any missed experimental broadening of the energy spectrum with Gaussian width σ leads to

$$\Delta m^2 \approx -2\sigma^2$$

- Thermal Doppler broadening (source)
- High voltage fluctuations (spectrometer)

- Often without any effect on the χ^2 statistic (goodness-of-fit) of a measurement!
The **Karlsruhe TRItium Neutrino Experiment**

A next current generation effort of probing the ν mass scale
KATRIN’s primary physics objective

- Improve sensitivity on $m(\nu_e)$ by one order of magnitude to 200 meV (90% C.L.)

- Statistical and systematic errors on $m^2(\nu_e)$ must be improved by two orders of magnitude to $\sigma_{\text{stat}}(m^2_\nu) \approx \sigma_{\text{syst}}(m^2_\nu) \approx 0.017 \text{ eV}^2$
KATRIN setup

Source & transport section
- Windowless gaseous tritium source
- Intensity \(10^{11} \text{ s}^{-1}\)
- Stability \(10^{-3} \text{ h}^{-1}\)
- Isotopic purity (> 95%)
- Tritium retention factor (> \(10^{14}\))
- Adiabatic transport of electrons

Spectrometer & detector section
- Spectrometer UHV \((p < 10^{-11} \text{ mbar})\)
- Energy resolution (<1 eV at 18.6 keV)
- High voltage stability (ppm/month)
- Low background rate (10 mcps)
- High detection efficiency (mcps to kcps)
Design aspects

$^3\text{H} \beta$-decay

- Short $T_{1/2}$ of 12.3 y → high-intensity source
- Low endpoint of 18.6 keV → good rel. signal strength
- Gas, closed loop → high isotopic purity
- Computation of final states, radiative & recoil corrections

MAC-E filter technique

Magnetic Adiabatic Collimation with Electrostatic filter
Picard et al., NIM B63 (1992) 345

Isotropic emission, strong B_s
Energy filtering, weak B_{min}
Resolution:

$$\frac{\Delta E}{E} = \frac{B_{\text{min}}}{B_{\text{max}}} = \frac{1}{20000} \quad \text{(at KATRIN)}$$

$\mu = \frac{E_\perp}{B} = \text{const.}$
KATRIN measuring strategy

- Choice of measuring time distribution determines balance between statistical and systematic errors
- Absolute observed rates, thus statistical errors, are smaller at lower spectrum energies
- Systematic uncertainties (energy loss) are larger at lower spectrum energies
KATRIN sensitivity

corresponds to 5 calender years of data-taking
v-mass ... and more!

Explore physics potential
• close to the spectral endpoint E_0:

RH currents
Bonn et al. (2011)

Violation of Lorentz symmetry
e.g. Diaz, Kostelecky & Lehnert (2013)

Constraining local CvB overdensities
e.g. Kaboth & Formaggio (2010)

Search for eV-scale sterile ν

• and further away from E_0:
Search for keV-mass scale sterile ν as WDM candidates
S. Mertens et al. (2015)

standard operation mode for KATRIN

non-standard operation, requires novel concepts
Status

• All hardware components are on site
 • Beam line integration and commissioning ongoing

• Analysis strategy and software in final dev. stage
 • Comprehensive probabilistic model
 • Gas dynamics simulations of the tritium source
 • Response function modelling incl. energy loss processes
 • 3D particle tracking suite
 • Blinding strategies evaluated
 • Frequentist (unified approach) & Bayesian (Markov Chain MCs) methods implemented

• First tritium runs in 2017
Thank you for your attention.
Backup slides
Mainz experiment results

- First analysis in 1992: $m^2(\nu_e) = -39 \pm 34_{\text{stat}} \pm 15_{\text{syst}} \text{eV}^2$

- A source-related systematic mistake was discovered later on
 - film of molecular tritium T_2 quench-condensed onto substrate
 - temperature-activated roughening, **missed increase of inelastic scattering**

- Final analysis in 2005: $m^2(\nu_e) = -0.6 \pm 2.2_{\text{stat}} \pm 2.1_{\text{syst}} \text{eV}^2$
 - $m(\nu_e) < 2.3 \text{ eV} \ (90\% \ C.L.)$
sterile m_ν sensitivity

- standard measuring time distr.
 optimized for active ν search
- 5 cal. years of data taking
- active ν mass is fixed at 0 eV

reactor anomaly
combined fit 90% C.L.
K. N. Abazajian et al. 2012

exclusion curve confidence levels

- KATRIN 5σ
- KATRIN 4σ
- KATRIN 3σ
- KATRIN 95%
- KATRIN 90%
- KATRIN 68%
Principle of electron capture (EC) spectroscopy

- Electron capture on Holmium 163Ho:
 - $e^- + ^{163}_{67}Ho \rightarrow ^{163}_{66}Dy^* + \nu_e$
- Deexcitation energy of daughter atom in form of electrons and x-rays recorded in microcalorimeters
- Shape distortion close to the Q-value depends on $m_{\nu e}^2$
Theoretical corrections

- Radiative corrections & recoil effects are well understood
- Final states of the excited daughter isotopes \(^3\text{HeT}^+ \), \(^3\text{HeD}^+ \), \(^3\text{HeH}^+ \) lead to a broadening of the spectrum

Excited final state distribution of \(T_2 / DT \)
- 0.1 eV binning
- \(T = 30 \) K

\[\beta \text{ spectrum incl. final states and corrections} \]
Why tritium?

\[\frac{d\Gamma}{dE} \propto |M|^2 \cdot F(Z, E) \cdot p(E + m) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_{\nu e}^2} \]

- **Superallowed transition:**
 - Matrix element M is not energy dependent

- **Low endpoint energy:**
 - fraction of decays at the endpoint is comparatively high \(\sim \frac{1}{E_0^3} \)

- **Short half life:**
 - specific activity is high
 - low amount of source material / less inelastic scattering

- **Hydrogen isotope:**
 - simple atomic shell
 - final states precisely calculable