Description
Using factorization homology, we develop a uniform and conceptual approach for treating homological stability, homological densities, and arithmetic densities for configuration spaces (and generalizations thereof) in algebraic geometry. This categorifies and generalizes the coincidences appearing in the work of Farb-Wolfson-Wood, and in fact, provides a conceptual understanding of these coincidences. Our computation of the stable homological densities also yields rational homotopy types which answer a question posed by Vakil-Wood. Our approach hinges on the study of homological stability of cohomological Chevalley complexes, which is of independent interest.