Speaker
Gustavo Jesso
(Lund)
Description
The Donovan-Wemyss Conjecture predicts that the isomorphism type of an isolated compound Du Val singularity R that admits a crepant resolution is completely determined by the derived-equivalence class of any of its contraction algebras. Crucial results of August, Hua-Keller and Wemyss reduced the DW conjecture to a problem closely related the question of uniqueness of enhancements of the singularity category of R. I will explain, based on an observation by Bernhard Keller, how the DW conjecture follows from a recent theorem of Fernando Muro and myself that we call the Derived Auslander-Iyama Correspondence.