Speaker
Camilla Felisetti
(Università di Modena e Reggio Emilia)
Description
Intersection cohomology is a topological notion adapted to the description of singular topological spaces, and the Decomposition Theorem for algebraic maps is a key tool in the subject. Motivated by the work of Mozgovoy and Reineke, in joint work with Andras Szenes and Olga Trapeznikova, we give a complete description of the intersection cohomology of the moduli space of vector bundles of any rank via a detailed analysis of the Decomposition Theorem applied to a certain map from parabolic bundles. We also give a new formula for the intersection Betti numbers of these moduli spaces, which has a clear geometric meaning.